

Model No. P0700WVF1MA00

MODEL NO :	P0700WVF1MA00
MODEL VERSION:	
SPEC VERSION :	1.1
ISSUED DATE:	2021-02-01
-	<pre>v Specification uct Specification</pre>

Customer :_

Approved by	Notes

TIANMA Confirmed :

Prepared by	Checked by	Approved by
Xiaohui.zhou	Feng.Tan	Xiaoxing.Ding

This technical specification is subjected to change without notice

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 1 of 19

Table of Contents

Tab	le of Contents	2
Red	cord of Revision	3
1	General Specifications	4
2	Input/Output Terminals	
3	Absolute Maximum Ratings	
4	Electrical Characteristics	
5	Timing Chart	10
6	Optical Characteristics	13
7	Environmental / Reliability Test	
8	Mechanical Drawing	17
9	Packing Drawing	18
10	Precautions for Use of LCD Modules	19

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 2 of 19

Model No. P0700WVF1MA00

Record of Revision

Rev	Issued Date	Description	Editor
1.0	2020-09-29	Preliminary release.	Xiaohui.zhou
1.1	2021-02-01	Updated drawing	Xiaohui.zhou
			\bigcirc
		20	
N			

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 3 of 19

 $\langle P \rangle$

1 General Specifications

Model No. P0700WVF1MA00

	Feature	Spec		
	Size	7.0inch		
	Resolution	800(RGB) x 480		
	Technology Type	a-Si		
Diaplay Space	Pixel Configuration	R.G.B. Vertical Stripe		
Display Spec.	Pixel pitch(mm)	0.1905 x0.1905		
	Display Mode	Normally black (SFT)		
	Surface Treatment	Top POL: AG		
	Viewing Direction	All		
	LCM (W x H x D) (mm)	169.8x109.7 x10.87 (Max)		
	Active Area(mm)	152.40 (W) x 91.44 (H)		
Mechanical Characteristics	Matching Connection Type	CN1:FI-S20S or compatible CN2:SHLP-06V-S-B		
	LED Numbers	14pcs (2P7S)		
	Weight (g)	TBD		
	Interface	1port LVDS, 6/8bit selectable		
Electrical	Color Depth	16.7M color		
Characteristics	Driver IC	Source IC: RM53350_3112 Gate IC: RM57750_3110		

Note 1: Requirements on Environmental Protection: Rohs

Note 2: LCM weight tolerance: ± 5%

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 4 of 19

Model No. P0700WVF1MA00

2 Input/Output Terminals

TFT Connector CN1: Connector type: FI-SEB20P-HFE (JAE) Matching Connector:FI-S20S or compatible BLU Connector CN2: Connector type:SM06B-SHLS-TF(LF)(SN)

Matching Connector:SHLP-06V-S-B PIN

Pin No.	Symbol	I/O	Function	Remark
			CN1	
1	VCC	Р	Power supply(+3.3V)	
2	VCC	Р	Power supply(+3.3V)	
3	GND	Р	Ground	
4	GND	Р	Ground	
5	Link0-	I	-LVDS differential data input	
6	Link0+	I	+LVDS differential data input	
7	GND	Р	Ground	
8	Link1-	I	-LVDS differential data input	
9	Link1+	I	+LVDS differential data input	
10	GND	Р	Ground	
11	Link2-	I	-LVDS differential data input	
12	Link2+	I	+LVDS differential data input	
13	GND	Р	Ground	
14	CLKIN-	I	-LVDS differential Clock input	
15	CLKIN+	I	+LVDS differential Clock input	
16	GND	Р	Ground	
17	Link3-	1	-LVDS differential data input	
18	Link3+		+LVDS differential data input	
19	Mode		MODE="H" ,8bit	
15	Widde		MODE="L",6bit	
20	SC		Scan direction control	Note1
		L	CN2	
1	NC	-	No connection	
2	NC	-	No connection	
3	LED C1	Р	LED Cathode1	
4	LED A1	Р	LED Anode1	

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 5 of 19

Model No. P0700WVF1MA00

5	LED A2	Р	LED Anode2	
6	LED C2	Р	LED Cathode2	

I---Input, O---Output, P--- Power/Ground

Note1: Scan direction is shown as below(PCB at down side):

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 6 of 19

3 Absolute Maximum Ratings

Item	Symbol	MIN	MAX	Unit	Remark
Power Supply Voltage	VCC	-0.5	5.0	V	
Input voltage for signal Note1	VIN	-0.5	5.0	V	Ta=25 ℃
Operating Temperature	Тор	-30	80	°C	Note2
Storage Temperature	Tst	-40	90	°C	NOLEZ
	RH		≪95	%	Ta≤40 ℃
Deletive I kunsiditu			≪85	%	40° C <i><</i> Ta <i>≦</i> 50°C
Relative Humidity Note2			≤55	%	50° C <i><</i> Ta ≤60°C
NOLEZ			≤36	%	60° C <i><</i> Ta≤70°C
			≤24	%	70° C <i><</i> Ta≤80°C
Absolute Humidity	AH		≪70	g/m ³	Ta>70 ℃

Table 3 Absolute Maximum Ratings

Note1: VIN represents Link 0-/+,Link 1-/+,Link 2-/+,Link 3-/+,CLKIN-/+,Mode,SC.

Note2: Measured at LCD Module surface (including self-heat)

Note3:Ta means the ambient temperature.

It is necessary to limit the relative humidity to the specified temperature range. Condensation on the module is not allowed.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 7 of 19

 $\langle P \rangle$

Model No. P0700WVF1MA00

4 Electrical Characteristics

4.1 Driving TFT LCD Panel

						Ta = 25	°C; VCC=3.3V
Item	Symbol	Min	Тур	Max	Unit	Remark	
Power Supply Volt	age	VCC	3.0	3.3	3.6	V	
Power supply rippl	e	Vp-p	-	-	100	mV	
Supply Current		IVCC	-	TBD	-	mA	Note1
Power consumptio	Power consumption		-	TBD	-	mW	Note I
Input Voltage	Low level	VIL	0		0.3*VCC	V	Note2
input voltage	High level	V _{IH}	0.7*VCC		VCC	V	NOLEZ
Differential input vo	oltage	VID	200		600	mV	
Differential input common voltage		Vсм	VID /2		VDD-1.2- VID /2	V	
Differential input	Low level	VTL	-100	-	-	mV	
threshold voltage	High level	VTH	-	-	100		
Inrush current		Inrush			1.5	Α	Note3

Figure 4.1.1 LVDS DC characteristics

Note1: To test the current dissipation, using the "white" testing pattern. Note2: For setting "SC" and "MODE". Note3: Inrush current definition

Vcc rising time is 470µs

Figure 4.1.2 Inrush current test condition

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 8 of 19

4.2 Driving Backlight

Item	Symbo I	Min	Тур	Мах	Unit	Note
Forward Current	lF	-	110	-	mA	IF/LED
Forward Current Voltage	VF	-	21	-	V	
Power Consumption	P_Total	-	4.62	-	W	
Operating Life Time	-	80000	100000		h	

LED_A2(+)· ☆ ☆ ☆ ☆ ☆ ☆ LED_C2(-)

Backlight Circuit Diagram 2*7=14LEDS; If=110mA/LED

- Note1: The LED driving condition is defined for total LED module.
- Note2: Under LCM operating, the stable forward current should be inputted. And forward voltage is for reference only.
- Note3: Optical performance should be evaluated at Ta=25°C only If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

Note4: The LED driving condition is defined for each LED module.

4.3 Module Block diagram

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 9 of 19

Model No. P0700WVF1MA00

5 Timing Chart

5.1 TFT-LCD Input Timing

VCC=3.3V, GND=0V, Ta=25℃									
Parameter	Symb ol	Min	Тур	Мах	Unit	Remark			
CLK frequency	1/t _{CLK}	25.2	27.2	30.5	MHz				
Horizontal blanking time	t _{HBT}	24	60	120	t _{CLK}	t _{HBP} + t _{HFP}			
Horizontal back porch	t _{HBP}	5	16	101	t _{CLK}				
Horizontal display area	t _{HD}	-	800	-	t _{CLK}				
Horizontal front porch	t _{HFP}	19	44	115	t _{CLK}				
Horizontal period	t _H	856	860	920	t _{CLK}				
Horizontal pulse width	t _{HPW}	1	2	100	t _{CLK}				
Vertical blanking time	\mathbf{t}_{VBT}	10	48	72	t _H	t _{VBP} + t _{VFP}			
Vertical back porch	t _{VBP}	5	5	67	t _H				
Vertical display area	t _{VD}	-	480	-	t _H				
Vertical front porch	t _{VFP}	5	43	67	t _H				
Vertical period	t _v	490	528	552	t _H				
Vertical pulse width	t _{VPW}	1	2	66	t _H				
Frame Rate	F	- (60	-	Hz				
	Т	able 5.1	Timing	table					

5.2 Timing Diagram

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 10 of 19

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 11 of 19

ΔΝΜΔ

Model No. P0700WVF1MA00

5.4 POWER ON/OFF SEQUENCE						
ltem	Symbol	Min	Тур	Max	Unit	Remark
VCC on to VCC stable	TP1	1	-	20	ms	
VCC stable to signal on	TP2	1	-	-	ms	
Signal on to LED on	TP3	200	-	-	ms	
VCC off time	TP4	1	-	10	ms	
VCC off to next VCC on	TP5	500	-	-	ms	
Signal off before VCC off	TP6	1	-		ms	
LED off before signal off	TP7	200	-	-	ms	

Figure 5.4 Power on/off sequence

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 12 of 19

 $\langle P \rangle$

Model No. P0700WVF1MA00

6 Optical Characteristics

ltem		Symbol	Condition	Min	Тур	Max	Unit	Remark
View Angles		θΤ	- CR≧10	75	85	-	Degree	Note2,3
		θΒ		75	85	-		
		θL		75	85	-		
		θR		75	85	-		
Contrast Ratio)	CR	θ=0°	800	1000			Note 3
Response Time		T _{ON}	25 ℃		25	35	ms	Note 4
		T_{OFF}	23 C					
Chromaticity	White	x	Backlight is on		TBD		5	Note 1,5
		У			TBD			
	Red	х			TBD			Note 1,5
		У			TBD			
	Green	х			TBD			Note 1,5
		У			TBD			
	Blue	х			TBD			Note 1,5
		У		\bigcirc	TBD			
Uniformity		U		75	80		%	Note 6
NTSC				65	70		%	Note 5
Luminance		-		1200	1500		cd/m ²	Note 7

Test Conditions:

- 1. $I_F = XX$ mA, and the ambient temperature is 25 °C.
- 2. The test systems refer to Note 1 and Note 2.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 13 of 19

Note 1: Definition of optical measurement system.

The optical characteristics should be measured in dark room. After 5 Minutes operation, the optical properties are measured at the center point of the LCD screen. All input terminals LCD panel must be ground when measuring the center area of the panel.

Note 2: Definition of viewing angle range and measurement system.

viewing angle is measured at the center point of the LCD

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 14 of 19

Model No. P0700WVF1MA00

Note 4: Definition of Response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (T_{ON}) is the time between photo detector output intensity changed from 10% to 90%. And fall time (T_{OFF}) is the time between photo detector output intensity changed from 90% to 10%.

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.

Note 6: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (Refer Fig. 2). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/ Lmax

L-----Active area length W----- Active area width

Lmax: The measured Maximum luminance of all measurement position.

Lmin: The measured Minimum luminance of all measurement position.

Note 7: Definition of Luminance:

Measure the luminance of white state at center point.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 15 of 19

7 Environmental / Reliability Test

Model No. P0700WVF1MA00

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ta = +80°C , 500 hours	IEC60068-2-1:2007 GB2423.2-2008
2	Low Temperature Operation	Ta = −30°C , 500 hours	IEC60068-2-1:2007 GB2423.1-2008
3	High Temperature Storage	Ta = +90°C , 500 hours	IEC60068-2-1:2007 GB2423.2-2008
4	Low Temperature Storage	Ta = −40°C , 500 hours	IEC60068-2-1:2007 GB2423.1-2008
5	Storage at High Temperature and Humidity	Ta = +60°C, 90% RH max,240hours	IEC60068-2-78 :2001 GB/T2423.3—2006
6	Thermal Shock (non-operation)	-30°C 30 min~+85°C 30 min, Change time:5min, 100 Cycle Start with cold temperature, End with high temperature,	IEC60068-2-14:1984, GB2423.22-2002
7	ESD	C=150pF,R=330Ω,5point/panel Air:±8Kv,5times; Contact:±4Kv,5times (Environment:15°C~35°C, 30%~60%.86Kpa~106Kpa)	IEC61000-4-2:2001 GB/T17626.2-2006
8	Vibration Test (non-operation)	1G Waveform: sinusoidal Frequency range: 5~500Hz Frequency sweep rate: 0.5 octave/mim Duration: one sweep from 5 to 500Hz in each of three mutually perpendicular axis(each x,y,z axis:1hour,total 3hrs)	
9	Shock Test (non-operation)	Half Sine Wave 60G ,2ms,±X,±Y,±Z 2times for each direction	IEC60068-2-27:2008 GB/T 2423.5-2019
10	Package Drop Test	Weight≤10Kg,Height:80cm; Weight>10Kg,,Height:60cm; 1corner,3edges,6surfaces	IEC60068-2-32:1990 GB/T2423.8—1995

Note1: Ta is the ambient temperature of sample.

Note2: Before cosmetic and function test, the product must have enough recovery time, at least 2 hours at room temperature.

Note3: In the standard condition, there shall be no practical problem that may affect the display function. After the reliability test, the product only guarantees operation, but don't guarantee all of the cosmetic specification.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 16 of 19

 \oslash

8 Mechanical Drawing

Model No. P0700WVF1MA00

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 17 of 19

TIANMA

Model No. P0700WVF1MA00

Packing Drawing 9

(如果客户对标签或 Label 有特殊要求,请注明)

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 18 of 19

Model No. P0700WVF1MA00

10 Precautions for Use of LCD Modules

10.1 Handling Precautions

10.1.1 The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.

10.1.2 If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.

10.1.3 Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.

10.1.4 The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.

10.1.5 If the display surface is contaMinated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:

Isopropyl alcohol

Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketone
- Aromatic solvents
- 10.1.6 Do not attempt to disassemble the LCD Module.
- 10.1.7 If the logic circuit power is off, do not apply the input signals.

10.1.8 To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.

- 10.1.8.1 Be sure to ground the body when handling the LCD Modules.
- 10.1.8.2 Tools required for assembly, such as soldering irons, must be properly ground.

10.1.8.3 To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.

10.1.8.4 The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

10.2 Storage precautions

10.2.1 When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.

10.2.2 The LCD modules should be stored under the storage temperature range. If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0° C $\sim 40^{\circ}$ C Relatively humidity: $\leq 80\%$

10.2.3 The LCD modules should be stored in the room without acid, alkali and harmful gas.

- 10.3 Transportation Precautions
 - 10.3.1 The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

The information contained herein is the exclusive property of TIANMA MICRO-ELECTRONICS Corporation and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of TIANMA MICRO-ELECTRONICS Corporation.

Page 19 of 19