INNOLUX

群創光電 PRODUCT SPECIFICATION

Doc. Number:

- Tentative Specification
- Preliminary Specification
- Approval Specification

MODEL NO.: N080ICE SUFFIX: GB1 (C2)

Customer:					
APPROVED BY	SIGNATURE				
Name / Title					
Note :					
Please return 1 copy for your confirmation with your signature and comments.					

Approved By	Checked By	Prepared By

\mathbf{V}	ersior	<u>60</u>
v	612101	10.0

31 December 2013

1 / 43

 \oslash

INNOLUX	
群創光電 PRODUCT SPECIFICATION	
CONTENTS	
1. GENERAL DESCRIPTION	4
1.1 OVERVIEW	
1.2 GENERAL SPECIFICATIONS	
2. MECHANICAL SPECIFICATIONS	
2.1 CONNECTOR TYPE	
3. ABSOLUTE MAXIMUM RATINGS	5
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	5
3.2 ELECTRICAL ABSOLUTE RATINGS	5
3.2.1 TFT LCD MODULE	5
4. ELECTRICAL SPECIFICATIONS	6
4.1 FUNCTION BLOCK DIAGRAM	
4.2. INTERFACE CONNECTIONS	6
4.3 ELECTRICAL CHARACTERISTICS	8
4.3.1 LCD ELETRONICS SPECIFICATION	8
4.3.2 LED CONVERTER SPECIFICATION	9
4.3.3 BACKLIGHT UNIT	9
4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS	
4.4.1 DC Electrical Characteristic	10
4.4.2 AC Electrical Characteristics	
4.5 MIPI interface (Mobile Industry Processing Interface)	
4.5.1 MIPI Lane Configuration	
4.6 POWER ON/OFF SEQUENCE	
5. OPTICAL CHARACTERISTICS	
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	
6. RELIABILITY TEST ITEM	
7. PACKING	
7.1 MODULE LABEL	
7.2 CARTON	
7.3 PALLET	
7.4 Un-Packing	
Appendix I. OUTLINE DRAWING (Label position will be updated as requirement)	
Appendix II. SYSTEM COVER DESIGN GUIDANCE Appendix III. NT35521 REGISTER SETTING	

Version 6.0

31 December 2013

2/43

REVISION HISTORY

Version	Date	Page	Description			
0.0	Sep, 12, 2013	All	Spec Ver.0.0 was first issued.			
1.0	Oct, 25, 2013	26~37	Add Packing ,System cover design guidance			
2.0	Nov, 04, 2013	31~34	Update 2D drawing			
3.0	Nov, 13, 2013	25	Update Image sticking spec.			
4.0	Nov, 18, 2013	19~20	Update Power Sequence.			
5.0	Dec, 03, 2013	4,25	Update Module size V ,Delete Image sticking spec.			
6.0	Dec, 18, 2013	31~33 38~43	Update OUTLINE DRAWING Add NT35521 REGISTER SETTING			

Version 6.0

31 December 2013

3 / 43

\Diamond

NNOLUX 群創光電 PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N080ICE-GB1 is a 8" (8" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and **31 pins MIPI** interface. This module supports 800 x 1280 WXGA mode.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	8" diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 1280	pixel	-
Pixel Pitch	0.13455 (H) x 0.13455 (V)	mm	-
Pixel Arrangement	RGB vertical stripe		-
Display Colors	16,777,216 (8bit color depth)	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating(3H), Low-Reflection	- 1	-
Luminance, White	350	Cd/m2	
Power Consumption	Total 1.5 W (Max.) (panel 0.3 W (Max.), BL 1	2W (Max.))	(1)

Note(1) The specified power consumption (with converter efficiency) is under the conditions at VCI = 3.3 V,

VDDI= 1.8V, fv = 60 Hz, Brightness = 350nits, $I_{F_{LED}}$ = 20mA and Ta = 25 ± 2 °C, whereas white

pattern is displayed.

2. MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	120.15	120.65	121.15	mm	
Module Size	Vertical (V)	187.14	187.64	188.14	mm	(1)
wodule Size	Thickness (T)	2.9 (2.9 (w/o PCBA) 5.1 (w/ PCBA)	mm	(')
CF Polarizer	Horizontal	109.54	110.04	110.54	mm	
	Vertical	174.12	174.62	175.12	mm	
Active Area	Horizontal		107.64		mm	
	Vertical		172.224		mm	
Weight		-	-	99	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: Panasonic AYF333135

Version	6.0
10101011	0.0

31 December 2013

4 / 43

\Diamond

NNOLUX 群創光電 PRODUCT SPECIFICATION

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

ltem	Symbol	Va	lue	Unit	Note	
		Min.	Max.		NOLE	
Storage Temperature	T _{ST}	-20	+70	°C	(1)	
Operating Ambient Temperature	T _{OP}	-10	+60	°C	(1), (2)	

Note(1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note(2) The temperature of panel surface should be -10 °C min. and 70 °C max.

3.2 ELECTRICAL ABSOLUTE RATINGS 3.2.1 TFT LCD MODULE

Item	Symbol	Va	lue	Unit	Note	
		Min.	Max.		Note	
Power Supply Voltage	VCI	-0.3	+5.0	V	(1)	
	VDDI	-0.3	+2.0	V	(1)	

Note(1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

Version 6.0

31 December 2013

5/43

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	I/O	Description	Remark
1	GND	Р	Ground	
2	GND	Р	Ground	
3	GND	Р	Ground	
4	D_0N	I	MIPI differential data0 input (Negative)	
5	RST	Ι	Device reset signal	
6	D0_P	I	MIPI differential data0 input (Positive)	
7	VCI	Р	3.3V input	
8	GND	Р	Ground	
9	VCI	Р	3.3V input	
10	D1_N	1	MIPI differential data1 input (Negative)	
11	NC(MTP)	Р	No connection, please keep it floating	
12	D1_P	Ι	MIPI differential data1 input (Positive)	
13	VDDI	Р	1.8V input	
14	GND	Р	Ground	
15	VDDI	Р	1.8V input	
16	CLK_N	Ι	MIPI differential clock input (Negative)	
17	LEDPWM	0	PWM control signal for LED driver (CABC)	
18	CLK_P	I	MIPI differential clock input (Positive)	
19	VLED	Ρ	Anode for light bar	
20	GND	Р	Ground	
21	VLED	Ρ	Anode for light bar	

Version 6.0

31 December 2013

6/43

INNOLUX				
群創光電	PRC	DUCT	SPECIFICATION	
		1	1	

22	D2_N	I	MIPI differential data2 input (Negative)	
23	ID		Ground	
24	D2_P	I	MIPI differential data2 input (Positive)	
25	LED1	Р	Cathode for light bar	
26	GND	Р	Ground	
27	LED2	Р	Cathode for light bar	
28	D3_N	Ι	MIPI differential data3 input (Negative)	
29	GND	Р	Ground	
30	D3_P	I	MIPI differential data3 input (Positive)	
31	GND	Ρ	Ground	

Note (1) The first pixel is odd as shown in the following figure.

Note (2) Normal operation/BIST pattern selection. (Control by MIPI LP Command)

Version 6.0

31 December 2013

7 / 43

4.3 ELECTRICAL CHARACTERISTICS 4.3.1 LCD ELETRONICS SPECIFICATION

ltem		Symbol		Values		Unit	Remark
item		Symbol	Min.	Тур.	Max.	Onit	Kelliark
Power supply y	Power supply voltage		3.0	3.3	3.6	V	
Fower supply v			1.7	1.8	1.9	V	
VDDI High level inp	VDDI High level input voltage		0.7 VDDI	-	VDDI	V	For I/O circuit
VDDI Low level inp	ut voltage	V _{IL2}	0	-	0.3 VDDI	V	
Power Supply	White	I _{VCI}	-	50	60	mA	Note (2)
Current	VVIIILE	I _{VDDI}	-	45	55	mA	Note (2)
Power Consur	nption	PLCD	-	-	300	mW	Note (3)

- Note(1) The ambient temperature is $Ta = 25 \pm 2 \text{ °C}$.
- Note(2) The specified power supply current is under the conditions at VCI = 3.3 V, VDDI = 1.8 V, Ta = $25 \pm 2 \text{ °C}$, DC Current and $f_v = 60 \text{ Hz}$, whereas a power dissipation check White pattern below is displayed.

Note(3) The power consumption is specified at the white pattern with the maximum current.

Version 6.0

31 December 2013

8 / 43

 $T_{2} = 25 \pm 2.00$

NNOLUX 群創光電 PRODUCT SPECIFICATION

4.3.2 LED CONVERTER SPECIFICATION

N/A

4.3.3 BACKLIGHT UNIT

					ia – 25 ±	2.0
Deveneter	Currench ed		Value		ال من ا	Nete
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
LED Light Bar Power Supply Voltage	VL	8.4	9	9.6	V	(1)(2)(Duty100%)
LED Light Bar Power Supply Current	IL	-	120	-	mA	(1)(2)(Duty100%)
Power Consumption	PL	-	1.08	1.16	W	(3)
LED Life Time	L _{BL}	15000	-	-	Hrs	(4)

Note(1) LED current is measured by utilizing a high frequency current meter as shown below :

- Note(2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.
- Note(3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)
- Note(4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and I_L = 20 mA(Per EA) until the brightness becomes $\leq 50\%$ of its original value.

Version 6.0

31 December 2013

9/43

INNOLUX

\oslash

群創光電 PRODUCT SPECIFICATION

4.4 MIPI DSI INPUT SIGNAL TIMING SPECIFICATIONS

4.4.1 DC Electrical Characteristic

4.4.1.1 DC Characteristics for DSI LP Mode

Parameter	Symbol	Conditions	S	pecificatio	n	UNIT
Falameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
Logic high level input voltage	VIHLPCD	LP-CD	450	-	1350	mV
Logic low level input voltage	VILLPCD	LP-CD	0	-	200	mV
Logic high level input voltage	VIHLPRX	LP-RX (CLK, D0, D1)	880	-	1350	mV
Logic low level input voltage	VILLPRX	LP-RX (CLK, D0, D1)	0	-	550	mV
Logic low level input voltage	VILLPRXULP	LP-RX (CLK ULP mode)	0	-	300	mV
Logic high level output voltage	Vohlptx	LP-TX (D0)	1.1	-	1.3	V
Logic low level output voltage	VOLLPTX	LP-TX (D0)	-50	-	50	mV
Logic high level input current	Ін	LP-CD, LP-RX	-	-	10	μA
Logic low level input current	lı.	LP-CD, LP-RX	-10	-	_	μA
Input pulse rejection	SGD	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-	-	300	Vps

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage)

Note 2) DSI high speed is off.

Note 3) Peak interference amplitude max. 200mV and interference frequency min. 450MHz.

Spike/Glitch rejection-DSI

Version 6.0

31 December 2013

10/43

4.4.1.2 DC Characteristics for DSI HS Mode

Parameter	Symphol	Conditions	S	pecificatio	n	UNIT
Parameter	Symbol	Conditions	MIN	TYP	MAX	UNIT
Input voltage common mode range	Vcmclk Vcmdata	DSI-CLK+/-, DSI-Dn+/- (Note2, 3)	70	-	330	mV
Input voltage common mode variation (≤ 450MHz)	Vcmrclkl Vcmrdatal	DSI-CLK+/-, DSI-Dn+/- (Note 4)	-50	-	50	mV
Input voltage common mode variation (≥ 450MHz)	Vcmrclkm Vcmrdatam	DSI-CLK+/-, DSI-Dn+/-	-	-	100	mV
Low-level differential input voltage threshold	Vthlclk Vthldata	DSI-CLK+/-, DSI-Dn+/-	-70	-		mV
High-level differential input voltage threshold	Vthhclk Vthhdata	DSI-CLK+/-, DSI-Dn+/-	-		70	mV
Single-ended input low voltage	VILHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-40	\mathbf{P}	-	mV
Single-ended input high voltage	VIHHS	DSI-CLK+/-, DSI-Dn+/- (Note 3)	-).	460	mV
Differential input termination resistor	Rterm	DSI-CLK+/-, DSI-Dn+/-	80	100	125	Ω
Single-ended threshold voltage for termination enable	Vterm-en	DSI-CLK+/-, DSI-Dn+/-	_	-	450	mV
Termination capacitor	CTERM	DSI-CLK+/-, DSI-Dn+/-	-	-	14	pF

Note 1) VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta=-30 to 70 °C (to +85 °C no damage).

Note 2) Includes 50mV (-50mV to 50mV) ground difference.

Note 3) Without VCMRCLKM / VCMRDATAM .

Note 4) Without 50mV (-50mV to 50mV) ground difference.

Note 5) Dn=D0, D1, D2 and D3.

Differential voltage range, termination resistor and Common mode voltage

Version 6.0

31 December 2013

11 / 43

4.4.2 AC Electrical Characteristics

4.4.2.1 MIPI DSI Timing Characteristics

4.4.2.1.1 High Speed Mode

(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V, Ta = -30 to 70℃)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
			4	-	8	ns	4 Lane (Note 2)
DSI-CLK+/-	2xUIINST	Double UI instantaneous	3	-	8	ns	3 Lane (Note 2)
			2.352	-	8	ns	2 Lane (Note 3)
DSI-CLK+/-			2	-	4	ns	4 Lane (Note 2)
	UIinsta UIinstb	UI instantaneous halfs (UI = UIINSTA = UIINSTB)	1.5	-	4	ns	3 Lane (Note 2)
	CINGIB		1.176	-	4	ns	2 Lane (Note 3)
DSI-Dn+/-	tos	Data to clock setup time	0.15xUI	-	-	ps	
DSI-Dn+/-	tон	Data to clock hold time	0.15xUI	-	-	ps	
DSI-CLK+/-	t DRTCLK	Differential rise time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	t drtdata	Differential rise time for data	150	-	0.3xUI	ps	
DSI-CLK+/-	t dftclk	Differential fall time for clock	150	-	0.3xUI	ps	
DSI-Dn+/-	t dftdata	Differential fall time for data	150	-	0.3xUI	ps	

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Maximum total bit rate is 2Gbps for 24-bit data format, 1.5Gbps for 18-bit data format and 1.33Gbps for 16-bit data format in 3 lanes or 4 lanes application which support to 800RGBx 1280 resolution.

Note 3) Maximum total bit rate is 1.7Gbps for 24-bit data format, 1.275Gbps for 18-bit data format and 1.13Gbps for 16-bit data format in 2 lanes application which support to 720RGBx1280 resolution.

DSI clock channel timing

Rising and fall time on clock and data channel

Version 6.0

31 December 2013

12/43

4.4.2.1.2 Low Power Mode

(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70℃)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
DSI-D0+/-	Тірхм	Length of LP-00, LP-01, LP-10 or LP-11 periods MPU → Display Module	50	-	75	ns	Input
DSI-D0+/-	Tlpxd	Length of LP-00, LP-01, LP-10 or LP-11 periods Display Module → MPU	50	-	75	ns	Output
DSI-D0+/-	TTA-SURED	Time-out before the MPU start driving	Tlpxd	-	2xTlpxd	ns	Output
DSI-D0+/-	Tta-getd	Time to drive LP-00 by display module	5xTlpxd	-	-	ns	Input
DSI-D0+/-	Tta-god	Time to drive LP-00 after turnaround request - MPU	4xTlpxd	-	-	ns	Output

Bus Turnaround (BAT) from MPU to display module Timing

Bus Turnaround (BAT) from display module to MPU Timing

Version 6.0

31 December 2013

13 / 43

4.4.2.1.3 DSI Bursts

(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70℃)

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit	Description
		Low Power Mode to High	Speed Mode	Timing			
DSI-Dn+/-	Tlpx	Length of any low power state period	50	-	-	ns	Input
DSI-Dn+/-	Ths-prepare	Time to drive LP-00 to prepare for HS transmission	40+4xUI	-	85+6xUI	ns	Input
DSI-Dn+/-	Ths-term-en	Time to enable data receiver line termination measured from when Dn crosses VILMAX	-	-	35+4xUI	ns	Input
		High Speed Mode to Low	Power Mode	Timing			
DSI-Dn+/-	Тнѕ-ѕкір	Time-out at display module to ignore transition period of EoT	40	-	55+4xUI	ns	Input
DSI-Dn+/-	Ths-exit	Time to drive LP-11 after HS burst	100	-		ns	Input
DSI-Dn+/-	Ths-trail	Time to drive flipped differential state after last payload data bit of a HS transmission burst	60+4xUI		+-	ns	Input
	-	High Speed Mode to/from Lo	w Power Mo	de Timi	ng		
DSI-CLK+/-	Tclk-pos	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+52xUI	-	-	ns	Input
DSI-CLK+/-	Tclk-trail	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	-	ns	Input
DSI-CLK+/-	THS-EXIT	Time to drive LP-11 after HS burst	100	-	-	ns	Input
DSI-CLK+/-	Tclk-prepare	Time to drive LP-00 to prepare for HS transmission	38	-	95	ns	Input
DSI-CLK+/-	Tclk-term-en	Time-out at clock lane display module to enable HS transmission	-	-	38	ns	Input
DSI-CLK+/-	Tclk-prepare + Tclk-zero	Minimum lead HS-0 drive period before starting clock	300	-	-	ns	Input
DSI-CLK+/-	Tclk-pre	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8xUI	-	-	ns	Input

Note 1) Dn = D0, D1, D2 and D3.

Note 2) Two HS transmission can be sent with a break as short as THS-EXIT from each other in continuous clock mode. In discontinuous mode, the break is longer which account TCLK-POS, TCLK-TRAIL and THS-EXIT, before activity in clock and data lanes again.

Version 6.0

31 December 2013

14 / 43

Data lanes-Low Power Mode to/from High Speed Mode Timing

Version 6.0

31 December 2013

15 / 43

4.4.2.2 Reset Input Timing

Reset input timing

(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70℃)

Signal	Symbol	Parameter	MIN	ТҮР	MAX	Unit	Description
	tresw	Reset "L" pulse width (Note 1)	10		-	μs	
RESX			<u> </u>		5	ms	When reset applied during Sleep In Mode
NEOX	t REST	Reset complete time (Note 2)		-	120	ms	When reset applied during Sleep Out Mode and Note 5

Note 1) Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Reset Rejected
Longer than 10µs	Reset
Between 5µs and 10µs	Reset Start

- Note 2) During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In–mode) and then return to Default condition for H/W reset.
- Note 3) During Reset Complete Time, values in OTP memory will be latched to internal register during this period. This loading is done every time when there is H/W reset complete time (t_{REST}) within 5ms after a rising edge of RESX.
- Note 4) Spike Rejection also applies during a valid reset pulse as shown below:

Note 5) It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

Version 6.0	31 December 2013	16 / 43
-------------	------------------	---------

4.4.2.3 Deep Standby Mode Timing

(VDDI=1.7~1.9V, VCI=3.0 to 3.6V, GND=0V,Ta = -30 to 70°C)

Signal	Symbol	Parameter	MIN	ТҮР	MAX	Unit	Description
	t _{discharge}	Sleep in into DSTB delay time	-	-	100	ms	
RESX	t _{rstlow}	Reset low pulse	3	-	-	ms	
	t _{initial}	Reset high to initial setting delay time	-		120	ms	

Note 1) t_discharge suggested delay time over 100ms.

Note 2) t_initial suggested delay time over 120ms.

Version 6.0

31 December 2013

17 / 43

4.5 MIPI interface (Mobile Industry Processing Interface)

The Display Serial Interface standard defines protocols between a host processor and peripheral devices that adhere to MIPI Alliance standards for mobile device interfaces. The DSI standard builds on existing standards by adopting pixel formats and command set defined in MIPI Alliance standards.

DSI-compliant peripherals support either of two basic modes of operation: Command Mode and Video Mode.

Note: The product only supports Video Mode operation.

Video Mode refers to operation in which transfers from the host processor to the peripheral take the form of a real-time pixel stream. In normal operation, the display module relies on the host processor to provide image data at sufficient bandwidth to avoid flicker or other visible artifacts in the displayed image. Video information should only be transmitted using High Speed Mode. To reduce complexity and cost, systems that only operate in Video Mode may use a unidirectional data path.

4.5.1 MIPI Lane Configuration

	MCU (Master) Display Module (Slave)				
	Unidirectional Lane				
Clock Lane+/-	■ Clock Only				
	■ Escape Mode(ULPS Only)				
	Bi-directional Lane				
Data Lane0+/-	■ Forward High-Speed				
Data Laneu+/-	Bi-directional Escape Mode				
	■ Bi-directional LPDT				
Data Lane1+/-	Unidirectional				
Data Lane I+/-	■ Forward High speed				
Data Lane2+/-	Unidirectional				
	Forward High speed				
Data Lane3+/-	Unidirectional				
	Forward High speed				

The connection between host device and display module is as reference.

Note: Usually, we suggest host can use non-continuous clock mode & non-burst mode with sync events to transmit the video stream to enhance ESD ability.

Version 6.0

31 December 2013

18 / 43

$\langle \rangle$

NNOLUX 群創光電 PRODUCT SPECIFICATION

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

a. Power on:

VDDI=1.7~1.9V, VCI(VDDA)=3.0 to 3.6V

	Value					
Symbol	Min. Typ.		Max.	Unit	Remark	
ton1	0	-	-	ms		
t2	-	No limit	-	μs		
t4	40	-	-	ms		
t5	20	-	-	ms		
t6	0	-	t4	ms		
t7	10	-	-	μs		
t8	8	-	-	VS	Keep data more than 8 frames (VS)	

Version 6.0

31 December 2013

19/43

 $\langle p \rangle$

b. Power off:

VDDI=1.7~1.9V, VCI(VDDA)=3.0 to 3.6V

	Value				
Symbol	Min.	Тур.	Max.	Unit	Remark
t9	150	-	-	μs	
tof1	0	-	-	ms	
t12	0	-	-	ms	
t13	0	-	-	ms	
t14	0	-	-	ms	
t15	100	-	-	ms	

Version 6.0

31 December 2013

20 / 43

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25±2	°C		
Ambient Humidity	На	50±10	%RH		
Supply Voltage	VDDI	1.8	V		
Supply voltage	VCI	3.3	V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current	l	20	mA		

The measurement methods of optical characteristics are shown in Section 5.2. The following items

should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		600	800	-	-	(2), (5) ,(7)
Response Time	•	T _R +T _F	θ _x =0°, θ _Y =0° Viewing Normal Angle	-	25	30	ms	(3) ,(7)
CP Luminance	of White	L _{CP}		300	350	-	Cd/m ²	(4), (6) ,(7)
	White	Wx Wy			0.313			
Color	R	Rx Ry		Тур –	0.618	Typ +		(4), (6) ,(7)
Coordinate	G	Gx Gy		0.03	0.344	0.03	-	
	В	Bx By			0.160			
NTSC		%		55	60			(2). (5).(7)
	White Variation		θ _x =0°, θ _Y =0°	80				(5).
White Va				67			%	(6).(7)
Flicker		dB				-30		(8)
Crosstalk		%				2		(9)
Gamma			θ _x =0°, θ _Y =0°	2.0	2.2	2.4		
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR>10		Dee	(1),(5)		
	Vertical	$\theta y - + \theta y +$		170	178	-	Deg.	,(7)

Version 6.0

31 December 2013

Note(3) Definition of Response Time (T_R, T_F) :

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Version 6.0

31 December 2013

22 / 43

Note(5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note(6) Definition of White Variation (δW):

Measure the luminance of gray level 63 at 13 points

 $\delta W_{9p} = \{Minimum [L (1) \sim L (13)] / Maximum [L (1) \sim L (13)]\}*100\%$

Active area

Version 6.0

31 December 2013

23 / 43

Note(8) Flicker

No visual flicker will be allowed. The flicker level should be measured on GS127, The output signal is measured by Minolta CA210 immediately while Vcom is optimized. The flicker is essentially a ratio of the Amplitude in the frequency spectrum at 30 Hz (A30) and 0 Hz (A0), i.e.,

Note(9) Crosstalk

No visual cross-talk will be allowed. Two luminance values are measured at the same position (i.e. A and A'). The cross-talk, is defined as,

 $C(A, B, C, D)=|(L(A', B', C', D') - L(A, B, C, D))/L(A, B, C, D)| \cdot 100\%,$ Where, L(A, B, C, D) = Luminance in Position A, B, C, D L(A', B', C', D') = Luminance in Position A', B', C', D' Crosstalk=max (C(A), C(B), C(C), C(D))

W

Background : GS 127 Center Pattern: GS 0, 50%(W) x 50%(H).

Version 6.0

31 December 2013

24 / 43

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	70℃, 240 hours	
Low Temperature Storage Test	-20°C , 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour ↔ 70°C, 0.5hour; 100 cycles, 1hour/cycle	
High Temperature Operation Test	60℃, 240 hours	(1) (2)
Low Temperature Operation Test	-10°C , 240 hours	
High Temperature & High Humidity Operation Test	60℃, RH 90%, 240hours	
ESD Test (Operation)	Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±12KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of $\pm X, \pm Y, \pm Z$	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

Note(1) Criteria : Normal display image with no obvious non-uniformity and no line defect.

(should be checked with 8% ND filter and within 45° viewing angle from vertical)

- Note(2) Evaluation should be tested after storage at room temperature for more than two hour
- Note(3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Version 6.0

31 December 2013

25/43

7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product
- (d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

Version 6.0

31 December 2013

26/43

NNOLUX 群創光電 PRODUCT SPECIFICATION 7.2 CARTON

(2) 30 Modules/Carton

Version 6.0

31 December 2013

27 / 43

7.3 PALLET

Sea & Land Transportation

Air Transportation

Figure. 7-2 Packing method

Version 6.0

31 December 2013

28 / 43

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

7.4 Un-Packing

Version 6.0

31 December 2013

29/43

Appendix I. OUTLINE DRAWING (Label position will be updated as requirement)

Version 6.0

31 December 2013

30 / 43

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

\Diamond

NNOLUX 群創光電 PRODUCT SPECIFICATION

\oslash

NNOLUX 群創光電 PRODUCT SPECIFICATION

INNOLUX

群創光電 PRODUCT SPECIFICATION

Appendix II. SYSTEM COVER DESIGN GUIDANCE

Version 6.0

31 December 2013

34 / 43

INNOLUX 群創光電 PRODUCT SPECIFICATION B1 Protrusion B: 2.0mm MIN BLU Label Module Label Protrusion B2 Gap between panel & protrusions is needed to prevent shock test failure. Because protrusions with small gap may hit panel during the test. Issue such as cell crack, abnormal Definition display may occur. Design gap C between touch panel & panel surface. 4 C: 0.5mm MIN C LCD BLU Module rear bezel Air gap design between touch panel & panel surface is needed to prevent pooling, newton ring or glass broken. Compression ration of double side tape may cause pooling issue or Definition newton ring. This phenomenon is obvious during pooling inspection procedure. To remain sufficient gap between touch panel and panel surface is recommended. 5 System rear-cover inner surface examination Backlight Panel rear cover Burr Burr PCB Ster - System rear-cover inner surface Burr at logo edge, steps, protrusions or PCB board may cause stress concentration. White Definition spot or glass broken issue may occur during reliability test. 6 Tape/sponge design on system inner surface

Version 6.0

31 December 2013

35/43

Version 6.0

31 December 2013

36 / 43

Version 6.0

31 December 2013

37 / 43

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

Appendix III. NT35521 REGISTER SETTING

REGW 0xFF,0xAA,0x55,0xA5,0x80

//======= Internal setting ======== REGW 0x6F,0x11,0x00 REGW 0xF7,0x20,0x00 REGW 0x6F,0x06 REGW 0xF7,0xA0 REGW 0x6F,0x19 REGW 0xF7,0x12

REGW 0x6F,0x08 REGW 0xFA,0x40 REGW 0x6F,0x11 REGW 0xF3,0x01

REGW 0xB1,0x6C,0x01

REGW 0xB6,0x08

REGW 0x6F,0x02 REGW 0xB8,0x08

REGW 0xBB,0x74,0x44

REGW 0xBC,0x00,0x00

REGW 0xBD, 0x02,0xB0,0x0C,0x0A,0x00

REGW 0xB0,0x05,0x05

Ve	ersior	n 6.	0
~~~	10101		

#### 31 December 2013

38 / 43



## NNOLUX 群創光電 PRODUC

## 群創光電 PRODUCT SPECIFICATION

REGW 0xB1,0x05,0x05

REGW 0xBC,0x90,0x01 REGW 0xBD,0x90,0x01

REGW 0xCA,0x00

REGW 0xC0,0x04

REGW 0xBE,0x29

REGW 0xB3,0x37,0x37 REGW 0xB4,0x19,0x19

REGW 0xB9,0x44,0x44 REGW 0xBA,0x24,0x24

REGW 0xEE,0x01 REGW 0xEF,0x09,0x06,0x15,0x18

regw 0xB0,0x00,0x00,0x00,0x25,0x00,0x43 regw 0x6F,0x06 regw 0xB0,0x00,0x54,0x00,0x68,0x00,0xA0 regw 0x6F,0x0C regw 0xB0,0x00,0xC0,0x01,0x00 regw 0xB1,0x01,0x30,0x01,0x78,0x01,0xAE regw 0x6F,0x06 regw 0xB1,0x02,0x08,0x02,0x50,0x02,0x52 regw 0xB1,0x02,0x96,0x02,0xDC regw 0xB1,0x02,0x96,0x03,0x49,0x03,0x77 regw 0xB2,0x03,0xA3,0x03,0xAC,0x03,0xC2 regw 0x6F,0x0C

#### Version 6.0

#### 31 December 2013

39/43



regw 0xB2,0x03,0xC9,0x03,0xE3 regw 0xB3,0x03,0xFC,0x03,0xFF

// PAGE6 : GOUT Mapping, VGLO select 0xF0, 0x55,0xAA,0x52,0x08,0x06 regw 0xB0, 0x00,0x10 regw 0xB1, 0x12,0x14 regw 0xB2, 0x16,0x18 regw regw 0xB3, 0x1A,0x29 0xB4, 0x2A,0x08 regw 0xB5, 0x31,0x31 regw 0xB6, 0x31,0x31 regw 0xB7, 0x31,0x31 regw regw 0xB8, 0x31,0x0A 0xB9, 0x31,0x31 regw 0xBA, 0x31,0x31 regw 0xBB, 0x0B,0x31 regw 0xBC, 0x31,0x31 regw regw 0xBD, 0x31,0x31 0xBE, 0x31,0x31 regw 0xBF, 0x09,0x2A regw 0xC0, 0x29,0x1B regw 0xC1, 0x19,0x17 regw 0xC2, 0x15,0x13 regw 0xC3, 0x11,0x01 regw 0xE5, 0x31,0x31 regw 0xC4, 0x09,0x1B regw 0xC5, 0x19,0x17 regw 0xC6, 0x15,0x13 regw 0xC7, 0x11,0x29 regw 0xC8, 0x2A,0x01 regw 0xC9, 0x31,0x31 regw 0xCA, 0x31,0x31 regw 0xCB, 0x31,0x31 regw 0xCC, 0x31,0x0B regw 0xCD, 0x31,0x31 regw 0xCE, 0x31,0x31 regw

#### Version 6.0

#### 31 December 2013

40 / 43



regw 0xCF, 0x0A,0x31 0xD0, 0x31,0x31 regw 0xD1, 0x31,0x31 regw regw 0xD2, 0x31,0x31 0xD3, 0x00,0x2A regw 0xD4, 0x29,0x10 regw 0xD5, 0x12,0x14 regw 0xD6, 0x16,0x18 regw 0xD7, 0x1A,0x08 regw 0xE6, 0x31,0x31 regw 0xD8, 0x00,0x00,0x00,0x54,0x00 regw 0xD9, 0x00,0x15,0x00,0x00,0x00 regw 0xE7, 0x00 regw

#### // PAGE3 :

regw 0xF0, 0x55,0xAA,0x52,0x08,0x03

- regw 0xB0, 0x20,0x00
- regw 0xB1, 0x20,0x00

regw 0xB2, 0x05,0x00,0x00,0x00,0x00

regw 0xB6, 0x05,0x00,0x00,0x00,0x00 regw 0xB7, 0x05,0x00,0x00,0x00,0x00

regw 0xBA, 0x57,0x00,0x00,0x00,0x00 regw 0xBB, 0x57,0x00,0x00,0x00,0x00

regw 0xC0, 0x00,0x00,0x00,0x00

- regw 0xC1, 0x00,0x00,0x00,0x00
- regw 0xC4, 0x60 regw 0xC5, 0x40

#### // PAGE5 :

regw 0xF0, 0x55,0xAA,0x52,0x08,0x05 regw 0xBD, 0x03,0x01,0x03,0x03,0x03 regw 0xB0, 0x17,0x06 regw 0xB1, 0x17,0x06

#### Version 6.0

#### 31 December 2013

41 / 43



regw 0xB2, 0x17,0x06 regw 0xB3, 0x17,0x06 regw 0xB4, 0x17,0x06 regw 0xB5, 0x17,0x06

regw 0xB8, 0x00

regw 0xB9, 0x00

regw 0xBA, 0x00

regw 0xBB, 0x02

regw 0xBC, 0x00

regw 0xC0, 0x07

regw 0xC4, 0x80

regw 0xC5, 0xA4

regw 0xC8, 0x05,0x30 regw 0xC9, 0x01,0x31

regw 0xCC, 0x00,0x00,0x3C

regw 0xCD, 0x00,0x00,0x3C

regw 0xD1, 0x00,0x04,0xFD,0x07,0x10 regw 0xD2, 0x00,0x05,0x02,0x07,0x10

regw 0xE5, 0x06

regw 0xE6, 0x06

regw 0xE7, 0x06 regw 0xE8, 0x06

regw 0xE8, 0x06 regw 0xE9, 0x06

regw 0xEA, 0x06

regw 0xED, 0x30

REGW 0x6F,0x11

REGW 0xF3,0x01

Version 6.0

#### 31 December 2013

42 / 43



regw 0x35 regw 0x11 regw 0x29

Version 6.0

31 December 2013

43 / 43

The copyright belongs to CHIMEI InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com