Document Title M101GWWF R0 Tentative Product Specification Page No. 1/26 Document No. Issue date 2019/12/02 Revision 00 ## **Tentative Product Specification** To: **Product Name: M101GWWF R0** Document Issue Date: 2019/12/02 | Customer | InfoVision Optoelectronics | |--|----------------------------| | <u>SIGNATURE</u> | <u>SIGNATURE</u> | | | REVIEWED BY CQM | | | | | | | | | PREPARED BY FAE | | | | | | | | Please return 1 copy for your confirmation | | | with your signature and comments. | | Note: 1. Please contact InfoVision Company before designing your product based on this product. 2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by IVO for any intellectual property claims or other problems that may result from application based on the module described herein. FQ-7-30-0-009-03D We InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 2/26 | |----------------|---|------------|------------|----------|------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | Revision | Date | Page | Revised Content/Summary | Remark | |----------|------------|------|-------------------------|--------| | 00 | 2019/12/02 | | First issued. | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 3/26 | |----------------|---|------------|------------|----------|------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | ## **CONTENTS** | 1.0 | GENERAL DESCRIPTIONS | 4 | |--------------------------|----------------------------|----| | 2.0 | ABSOLUTE MAXIMUM RATINGS | 6 | | 3.0 | OPTICAL CHARACTERISTICS | 8 | | 4.0 | ELECTRICAL CHARACTERISTICS | 11 | | 5.0 | MECHANICAL CHARACTERISTICS | 20 | | 6.0 | RELIABILITY CONDITIONS | 22 | | 7.0 | PACKAGE SPECIFICATION | 23 | | 8.0 | LOT MARK | 24 | | 9.0 | GENERAL PRECAUTION | 25 | | 5.0
6.0
7.0
8.0 | MECHANICAL CHARACTERISTICS | | | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 4/26 | |----------------|---|------------|------------|----------|------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### 1.0 General Descriptions #### 1.1 Introduction The M101GWWF R0 is a Color Active Matrix Liquid Crystal Display with a back light system. The matrix uses a-Si Thin Film Transistor as a switching device. This TFT LCD has a 10.1 inch diagonally measured active display area with WXGA resolution (1,280 horizontal by 800 vertical pixels array). #### 1.2 Features - Supported WXGA Resolution - LVDS Interface - Wide View Angle - Compatible with RoHS Standard #### 1.3 Product Summary | 1.3 Product | Summary | | 1 | |--------------------------|---------|---|--------------------| | Items | | Specifications | Unit | | Screen Diagonal | | 10.1 | inch | | Active Area (H x V) | | 216.96 x135.60 | mm | | Number of Pixels (H x V) | | 1280x800 | - | | Pixel Pitch (H x V) | | 0.1695×0.1695 | mm | | Pixel Arrangement | t | R.G.B. Vertical Stripe | - | | Display Mode | | Normally Black | - | | White Luminance | | (350) (Typ.) | cd /m ² | | Contrast Ratio | | (800) (Typ.) | - | | Response Time | | (25) (Typ.) | ms | | Input Voltage | | (3.3) (Typ.) | V | | power consumptio | n | TBD (Max.) | W | | Weight | 4 | 160(Max.) | g | | Outline | w/o PCB | (229.46) (Typ.) x (149.1)(Typ.) x (2.8) (Max.) | mm | | Dimension | w/ PCB | (229.46) (Typ.) x (149.1)(Typ.) x (4.56) (Max.) | mm | | (H x V x D) | WITOB | (220.40) (1 yp.) x (140.1)(1 yp.) x (4.00) (Wax.) | 111111 | | Electrical Interface | (Logic) | LVDS | - | | Support Color | | (16.7) M | - | | NTSC | | (45) (Typ.) | % | | Viewing Direction | | All | - | | Surface Treatment | t | Glare, Hard-Coating 3H | - | | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 5/26 | |----------------|---|------------|------------|----------|------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### 1.4 Functional Block Diagram Figure 1 shows the functional block diagram of the LCD module. Figure 1 Block Diagram ## InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 6/26 | |----------------|---|------------|------------|----------|------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | ### **Pixel Mapping** #### Figure 2 Pixel Mapping #### 2.0 Absolute Maximum Ratings **Table 1 Electrical & Environment Absolute Rating** | Item | Symbol | Min. | Max. | Unit | Note | |----------------------------|---------------------|--------|------|------------------------|-----------------| | Logic Supply Voltage | V_{DD} | (-0.3) | (4) | V | | | Logic Input Signal Voltage | V _{Signal} | (-0.3) | (4) | V | (1) (2) (3) (4) | | Operating Temperature | T_gs | -20 | 70 | $^{\circ}\!\mathbb{C}$ | (1),(2),(3),(4) | | Storage Temperature | T _a | -30 | 80 | $^{\circ}\!\mathbb{C}$ | | Note (1) All the parameters specified in the table are absolute maximum rating values that may cause faulty operation or unrecoverable damage, if exceeded. It is recommended to follow the typical value. Note (2) All the contents of electro-optical specifications and display fineness are guaranteed under Normal Conditions. All the display fineness should be inspected under normal conditions. Normal conditions are defined as follow: Temperature: 25°C, Humidity: 55±10%RH. Note (3) Unpredictable results may occur when it was used in extreme conditions. Ta= Ambient Temperature, T_{gs}= Glass Surface Temperature. All the display fineness should be inspected under | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 7/26 | |----------------|---|------------|------------|----------|------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### normal conditions. Note (4) Temperature and relative humidity range are shown in the figure below. Wet bulb temperature should be lower than 57.8° C, and no condensation of water. Besides, protect the module from static electricity. IVO InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 8/26 | |----------------|---|------------|------------|----------|------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | ## 3.0 Optical Characteristics The optical characteristics are measured under stable conditions as following notes. #### **Table 2 Optical Characteristics** | Item | Conditions | | Min. | Тур. | Max. | Unit | Note | |-------------------------|------------------|-----------------|---------|---------|---------|-------------------|--| | | Horizontal | θ x+ | (75) | (85) | - | | | | Viewing Angle | Horizoniai | θ _{x-} | (75) | (85) | - | dograa | (1) (2) (2) (4) (9) | | (CR≥10) | Vartical | θ _{y+} | (75) | (85) | - | degree | (1),(2),(3),(4),(8) | | | Vertical | θ _{y-} | (75) | (85) | - | | | | Contrast Ratio | Center | | (600) | (800) | - | | (1),(2),(4),(8)
$\theta x = \theta y = 0^{\circ}$ | | Response Time | Rising + Falling | 9 | - | (25) | (50) | ms | (1),(2),(5),(8)
$\theta x = \theta y = 0^{\circ}$ | | | Red x | | TBD | TBD | TBD | - | | | | Red y | | TBD | TBD | TBD | - | | | Color | Green x | | TBD | TBD | TBD | - | | | Chromaticity | Green y | | TBD | TBD | TBD | - | (1),(2),(3),(8) | | (CIE1931) | Blue x | | TBD | TBD | TBD | - | θx=θy=0° | | (OIL 1931) | Blue y | | TBD | TBD | TBD | - | | | | White x | | Тур. | (0.313) | Тур. | - | | | | White y | | (-0.03) | (0.329) | (+0.03) | - | | | NTSC | - | | (42) | (45) | - | % | (1),(2),(3),(8)
$\theta x = \theta y = 0^{\circ}$ | | White Luminance | Center | | (300) | (350) | - | cd/m ² | (1),(2),(6),(8)
θx=θy=0° | | Luminance
Uniformity | 9 Points | | (70) | (75) | - | % | (1),(2),(7),(8)
θx=θy=0° | |--| ## InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tenta | Page No. | 9/26 | | | |----------------|-------------------|------------|------------|----------|----| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### Note (1) Measurement Setup: The LCD module should be stabilized at given ambient temperature (25°C) for 30 minutes to avoid abrupt temperature changing during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 30 minutes in the windless room. **Figure 4 Measurement Setup LCD Module** .CD Panel Photo Meter (DMS 1140) Center of the Screen 180 mm **Light Shield Room** *Ambient Luminance<2lux *Ambient Temperature 25℃ Note (2) The LED input parameter setting as: V LED: (12) V PWM LED: duty 100 % Note (3) Definition of Viewing Angle Figure 5 Definition of Viewing Angle Note (4) Definition of Contrast Ratio (CR) The contrast ratio can be calculated by the following expression: Contrast Ratio (CR) = The luminance of White pattern/ The luminance of Black pattern InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tentative Product Specification | | | | 10/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | Note (5) Definition of Response Time (T_R, T_F) Figure 6 Definition of Response Time Note (6) Definition of Luminance White Measure the luminance of White pattern (Ref.: Active Area) D isplay Luminance=L1(center point) Note (7) Definition of Luminance Uniformity (Ref.: Active Area) Measure the luminance of White pattern at 9 points. Luminance Uniformity= Min.(L1, L2, ... L9) / Max.(L1, L2, ... L9) H—Active Area Width, V—Active Area Height, L—Luminance Figure 7 Measurement Locations of 9 Points Note (8) All optical data are based on IVO given system & nominal parameter & testing machine in this document. | Document Title | M101GWWF R0 Tentative Product Specification | | | | 11/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### **Electrical Characteristics** #### **4.1 Interface Connector** ### **Table 3 Signal Connector Type** | Item | Description | |---------------------|----------------------| | Manufacturer / Type | IPEX / 20455-040E-66 | | Pin# | Signal Name | Description | Remarks | |------|-------------|---------------------------------|---------| | 4 | | · | | | 1 | NC | No Connection | | | 2 | VDD | Power supply | - | | 3 | VDD | Power supply | - | | 4 | NC | No Connection | - | | 5 | NC | No Connection | - | | 6 | NC | No Connection | - | | 7 | NC | No Connection | - | | 8 | LV0N | -LVDS Differential Data Input | _ | | 9 | LV0P | +LVDS Differential Data Input | | | 10 | GND | Ground | _ | | 11 | LV1N | -LVDS Differential Data Input | - | | 12 | LV1P | +LVDS Differential Data Input | | | 13 | GND | Ground | - | | 14 | LV2N | -LVDS Differential Data Input | | | 15 | LV2P | +LVDS Differential Data Input | - | | 16 | GND | Ground | - | | 17 | LVCLKN | -LVDS Differential Clock Input | _ | | 18 | LVCLKP | +LVDS Differential Clock Input | | | 19 | GND | Ground | - | | 20 | LV3N | -LVDS Differential Data Input | | | 21 | LV3P | +LVDS Differential Data Input | - | | 22 | GND | Ground | - | | 23 | LED_GND | Ground for LED Driving | - | | 24 | LED_GND | Ground for LED Driving | - | | 25 | LED_GND | Ground for LED Driving | - | | 26 | NC | No Connection | - | | 27 | LED_PWM | PWM Input Signal for LED Driver | - | | 28 | LED_EN | LED Enable Pin | - | | | | | | All rights strictly reserved reproduction or issue to third parties in any form whatever is not permitted without written authority from the proprietor | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | |----------------|-------------------|---|------------|----------|----| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | 29 | NC | Reserved For CABC | - | |----|---------|---|----------------| | 30 | NC | No Connection | - | | 31 | LED_VCC | Power Supply for LED Driver | - | | 32 | LED_VCC | Power Supply for LED Driver | - | | 33 | LED_VCC | Power Supply for LED Driver | - | | 34 | NC | No Connection | - | | 35 | BIST | LCD Panel Self Test Enable, When it is not used, Connecting to GND is recommended, don't floating | Active Low(0V) | | 36 | CSB | Serial communication enables. (For IVO only) | _ | | 37 | SCL | Serial communication clock input. (For IVO only) | - | | 38 | SDA | Serial communication data input. (For IVO only) | - | | 39 | SCL_I2C | Serial communication clock input. (For IVO only) | - | | 40 | SDA_I2C | Serial communication data input. (For IVO only) | - | | Document Title | M101GWWF R0 Tentative Product Specification | | | | 13/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### 4.2 Signal Electrical Characteristics 4.2.1 Signal Electrical Characteristics For LVDS Receiver The built-in LVDS receiver is compatible with (ANSI/TIA/TIA-644) standard. **Table 5 LVDS Receiver Electrical Characteristics** | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |--------------------------------------|-----------------|------|------|------|------|------------------------| | Differential Input High Threshold | Vth | 100 | 200 | 300 | mV | V _{CM} =+1.2V | | Differential Input Low Threshold | Vtl | -300 | -200 | -100 | mV | V _{CM} =+1.2V | | Magnitude Differential Input Voltage | V _{ID} | 200 | - | 600 | mV | - | | Common Mode Voltage | V_{CM} | 1 | 1.2 | 1.4 | V | VID =0.2 | Note (1) Input signals shall be low or Hi-resistance state when VDD is off. Note (2) All electrical characteristics for LVDS signal are defined and shall be measured at the interface connector of LCD. **Figure 8 Voltage Definitions** | Document Title | M101GWWF R0 Tenta | Page No. | 14/26 | | | |----------------|-------------------|------------|------------|----------|----| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | Figure 9 Measurement System IVO InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | | |----------------|-------------------|---|------------|----------|----|--| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | #### 4.2.2 LVDS Receiver Internal Circuit Figure 10 shows the internal block diagram of the LVDS receiver. This LCD module equips termination resistors for LVDS link. Figure 10 LVDS Receiver Internal Circuit ## InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | | |----------------|-------------------|---|------------|----------|----|--| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | Figure 11 Data Mapping #### 4.3 Interface Timings **Table 6 Interface Timings** | Parameter | Symbol | Min. | Тур. | Max. | Unit | |----------------------|--------|---------|---------|---------|--------| | LVDS Clock Frequency | Fclk | (70.0) | (72.4) | (76.6) | MHz | | H Total Time | HT | (1,410) | (1,440) | (1,470) | Clocks | | H Active Time | HA | | 1,280 | | Clocks | | V Total Time | VT | (828) | (838) | (868) | Lines | | V Active Time | VA | 800 | | | Lines | | Frame Rate | FV | - | (60) | - | Hz | Note1: HT * VT *Frame Frequency \leq (76.6) MHz Note2: All reliabilities are specified for timing specification based on refresh rate of 60Hz. | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | | |----------------|-------------------|---|------------|----------|----|--| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | #### 4.4 Input Power Specifications Input power specifications are as follows. ### **Table 7 Input Power Specifications** | Parameter | | Symbol | Min. | Тур. | Max. | Unit | Note | |-----------------------|--------------|---------------------|----------|----------|---------|------------|-------------| | System Powe | er Supply | | | | | | | | LCD Drive Vol | tage (Logic) | V_{DD} | (3.0) | (3.3) | (3.6) | V | (1),(2),(3) | | VDD Current | | I _{DD} | - | - | TBD | A | (1) (1) | | VDD Power Consumption | TBD | P _{DD} | - | - | TBD | W | (1),(4), | | Rush Current | | I _{Rush} | - | - | (1.5) | Α | (1),(5) | | Allowable Log | | $V_{VDD\text{-RP}}$ | - | - (| (300) | mV | (1) | | LED Power S | иррІу | | | | | | | | LED Input Vol | tage | V_{LED} | (6) | (12) | (21) | V | (1),(2) | | LED Power Co | onsumption | P _{LED} | - | - | (2.5) | W | (1),(6) | | LED Forward | Voltage | V _F | (2.8) | - | (3.3) | V | | | LED Forward | Current | l _F | - | (20) | - | mA | | | PWM Signal | High | V | (3) | - | (3.6) | V | (4) | | Voltage | Low | V_{PWM} | (0) | - | (0.4) | V | (1) | | LED Enable | High | | (3) | - | (3.6) | | | | Voltage | Low | V_{LED_EN} | (0) | - | (0.4) | V | | | | | | (100Hz) | - | (200Hz) | Duty≥0.1% | | | | | | (200Hz) | - | (500Hz) | Duty≥0.25% | | | | | | (500Hz) | - | (1kHz) | Duty≥0.5% | | | Input DMM Fr | aguana. | _ | (1kHz) | - | (2kHz) | Duty≥1% | (4) (2) (7) | | Input PWM Fro | equency | F_PWM | (2kHz) | - | (5kHz) | Duty≥2.5% | (1),(2),(7) | | | | | (5kHz) | - | (10kHz) | Duty≥5% | | | | | | (10kHz) | - | (20kHz) | Duty≥10% | | | | | | (20kHz) | - | (30kHz) | Duty≥15% | | | Duty Ratio | | PWM | (5) | - | (100) | % | (1),(8) | | LED Life Time | | LT | (20,000) | (25,000) | - | Hours | (1),(8) | ## InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | | |----------------|-------------------|---|------------|----------|----|--| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | Note (1) All of the specifications are guaranteed under normal conditions. Normal conditions are defined as follow: Temperature: 25 °C, Humidity: 55± 10%RH. Note (2) All of the absolute maximum ratings specified in the table, if exceeded, may cause faulty operation or unrecoverable damage. It is recommended to follow the typical value. Note (3) The specified V_{DD} current and power consumption are measured under the V_{DD} = 3.3 V, F_{V} = 60 Hz condition and TBD pattern. Note (4) The figure below is the measuring condition of V_{DD}. Rush current can be measured when T_{RUSH} is 0.5 ms. Figure 12 V_{DD} Rising Time Note (5) The power consumption of LED Driver are under the V_{LED} = 12 V, Dimming of Max luminance. Note (6) Although acceptable range as defined, the dimming ratio is not effective at all conditions. The PWM frequency should be fixed and stable for more consistent luminance control at any specific level desired. Note (7) The operation of LED Driver below minimum dimming ratio may cause flickering or reliability issue. Note (8) The life time is determined as the sum of the lighting time till the luminance of LCD at the typical LED current reducing to 50% of the minimum value under normal operating condition. | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | | |----------------|-------------------|---|------------|----------|----|--| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | #### 4.5 Power ON/OFF Sequence - 1. Interface signals are also shown in the chart. Signals from any system shall be Hiresistance state or low level when V_{DD} voltage is off. - 2. Please set timing according to the following figures, otherwise it may cause image sticking. Figure 13 Power Sequence **Table 8 Power Sequencing Requirements** | Parameter | Symbol | Unit | Min | Тур. | Max | |---|--------|------|-------|------|------| | V _{DD} Rise Time | T1 | ms | (0.5) | | (10) | | V _{DD} Good to Signal Valid | T2 | ms | (30) | | (90) | | Signal Valid to Backlight On | Т3 | ms | (200) | | | | Backlight Power On Time | T4 | ms | (0.5) | | | | Backlight V _{DD} Good to System PWM On | T5 | ms | (10) | | | | System PWM ON to Backlight Enable ON | T6 | ms | (10) | | | | Backlight Enable Off to System PWM Off | T7 | ms | (0) | | | | System PWM Off to B/L Power Disable | T8 | ms | (10) | | | | Backlight Power Off Time | Т9 | ms | (0.5) | (10) | (30) | | Backlight Off to Signal Disable | T10 | ms | (200) | | | | Signal Disable to Power Down | T11 | ms | (0) | | (50) | | V _{DD} Fall Time | T12 | ms | (0.5) | (10) | (30) | | Power Off | T13 | ms | (500) | | | | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | | |----------------|-------------------|---|------------|----------|----|--| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | #### 5.0 Mechanical Characteristics #### 5.1 Outline Drawing Figure 14 Reference Outline Drawing (Front Side) Figure 15 Reference Outline Drawing (Back Side) Unit: mm Note: Unnoted tolerance ±0.5mm; IVO InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tentative Product Specification | | | | 21/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | ## 5.2 Dimension Specifications #### **Table 9 Module Dimension Specifications** | Parameter | | Min | Тур | Max | Unit | |-----------|--------------|----------|----------|----------|------| | Width | | (229.06) | (229.46) | (229.86) | mm | | Height | | (149.0) | (149.1) | (149.5) | mm | | Thickness | Without PCBA | (2.2) | (2.5) | (2.8) | mm | | Thickness | With PCBA | - | - | (4.56) | mm | | Weight | | - | - | (165) | g | Note: Outline dimension measure instrument: Vernier Caliper. | Document Title | M101GWWF R0 Tenta | M101GWWF R0 Tentative Product Specification | | | | | |----------------|-------------------|---|------------|----------|----|--| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | | #### 6.0 Reliability Conditions #### **Table 10 Reliability Condition** | Item | | Package | Test Conditions | | Note | | |--|-----------------|---------|--|----------------------|---------------------|--| | High Temperature/High
Humidity Operating Test | | Module | T _{gs} =60℃, 90%RH, 240 hours | | (1),(2),(3),
(4) | | | High Temperature Operating Test | | Module | T _{gs} =70℃, 240 hours | | | | | Low Temperature Operating Test | | Module | T _a =-20°C, 240 hours | | | | | Low Temperature Storage
Test | | Module | T _a =-30℃, 240 hours | | (1),(3),(4) | | | High Temperature Storage Test | | Module | T _a =80℃,240 hours | | | | | Shock Non-operating Test | | Module | 240G, 2ms, 1time for ±x, ±y, ±z 6 directions | | | | | Vibration Non-operating Test | | Module | 1.5G, 10~500 Hz, x、y、z each axis/1hour. | | (1),(3),(5) | | | COD To at | On a matting of | Madula | Contact | ±8KV, 150pF(330Ohm) | (1) (2) (6) | | | ESD Test | Operating | Module | Air | ±15KV, 150pF(330Ohm) | (1),(2),(6) | | Note (1) A sample can only have one test. Outward appearance, image quality and optical data can only be checked at normal conditions according to the IVO document before reliable test. Only check the function of the module after reliability test. - Note (2) The setting of electrical parameters should follow the typical value before reliability test. - Note (3) During the test, it is unaccepted to have condensate water remains. Besides, protect the module from static electricity. - Note (4) The sample must be released for 24 hours under normal conditions before judging. Furthermore, all the judgment must be made under normal conditions. Normal conditions are defined as follow: Temperature: 25° C, Humidity: $55\pm10\%$ RH. T_a = Ambient Temperature, T_{gs} = Glass Surface Temperature. - Note (5) The module should be fixed firmly in order to avoid twisting and bending. - Note (6) It could be regarded as pass, when the module recovers from function fault caused by ESD after resetting. ## InfoVision Optoelectronics (Kunshan) Co.,LTD. | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 23/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### **Package Specification** 7.0 Figure 17 Packing Method | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 24/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | 8.0 Lot Mark TBD | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 25/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | #### 9.0 General Precaution #### 9.1 Using Restriction This product is not authorized for using in life supporting systems, aircraft navigation control systems, military systems and any other appliance where performance failure could be life-threatening or lead to be catastrophic. #### 9.2 Operation Precaution (1)The LCD product should be operated under normal conditions. Normal conditions are defined as below: Temperature: 25°C Humidity: 55±10% Display pattern: continually changing pattern (Not stationary) - (2) Brightness and response time depend on the temperature. (It needs more time to reach normal brightness in low temperature.) - (3) It is necessary for you to pay attention to condensation when the ambient temperature drops suddenly. Condensate water would damage the polarizer and electrical contacted parts of the module. Besides, smear or spot will remain after condensate water evaporating. - (4) If the absolute maximum rating value was exceeded, it may damage the module. - (5) Do not adjust the variable resistor located on the module. - (6) Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding may be important to minimize the interference. - (7) Image sticking may occur when the module displayed the same pattern for long time. - (8) Do not connect or disconnect the module in the "power on" condition. Power supply should always be turned on/off by the "power on/off sequence" - (9) Ultra-violet ray filter is necessary for outdoor operation. #### 9.3 Mounting Precaution - (1) All the operators should be electrically grounded and with Ion-blown equipment turning on when mounting or handling. Dressing finger-stalls out of the gloves is important for keeping the panel clean during the incoming inspection and the process of assembly. - (2) It is unacceptable that the material of cover case contains acetic or chloric. Besides, any other material that could generate corrosive gas or cause circuit break by electro-chemical reaction is not desirable. - (3) The case on which a module is mounted should have sufficient strength so that external force is not transmitted to the module directly. - (4) It is obvious that you should adopt radiation structure to satisfy the temperature specification. - (5) It should be attached to the system tightly by using all holes for mounting, when the module is assembled. Be careful not to apply uneven force to the module, especially to the PCB on the back. - (6) A transparent protective film needs to be attached to the surface of the module. - (7) Do not press or scratch the polarizer exposed with anything harder than HB pencil lead. In | Document Title | M101GWWF R0 Tentative Product Specification | | | Page No. | 26/26 | |----------------|---|------------|------------|----------|-------| | Document No. | | Issue date | 2019/12/02 | Revision | 00 | addition, don't touch the pin exposed with bare hands directly. - (8) Clean the polarizer gently with absorbent cotton or soft cloth when it is dirty. - (9) Wipe off saliva or water droplet as soon as possible. Otherwise, it may cause deformation and fading of color. - (10) Desirable cleaners are IPA (Isopropyl Alcohol) or hexane. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanent damage to the polarizer due to chemical reaction. - (11) Do not disassemble or modify the module. It may damage sensitive parts in the LCD module, and cause scratches or dust remains. IVO does not warrant the module, if you disassemble or modify the module. #### 9.4 Handling Precaution - (1) Static electricity will generate between the film and polarizer, when the protection film is peeled off. It should be peeled off slowly and carefully by operators who are electrically grounded and with Ion-blown equipment turning on. Besides, it is recommended to peel off the film from the bonding area. - (2) The protection film is attached to the polarizer with a small amount of glue. When the module with protection film attached is stored for a long time, a little glue may remain after peeling. - (3) If the liquid crystal material leaks from the panel, keep it away from the eyes and mouth. In case of contact with hands, legs or clothes, it must be clean with soap thoroughly. #### 9.5 Storage Precaution When storing modules as spares for long time, the following precautions must be executed. - (1) Store them in a dark place. Do not expose to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity. - (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped. - (3) It is recommended to use it in a short-time period, after it's unpacked. Otherwise, we would not guarantee the quality. #### 9.6 Others When disposing LCD module, obey the local environmental regulations.