

Doc. Number: V0

Tentative Specification(DR2)
 Preliminary Specification
 Approval Specification

MODEL NO.: JE070IA SUFFIX: 18J

Customer: APPROVED BY SIGNATURE
Name / Title
Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By
Henry Chien	Annie Lu	Tony Wang

Version	0.	0

31 July 2018

1/25

INNOLUX 群創光電

PRODUCT SPECIFICATION

CONTENTS

1. GENERAL DESCRIPTION4	•
1.1 OVERVIEW4	
1.2 GENERAL SPECIFICATIONS4	
2. MECHANICAL SPECIFICATIONS	•
3. ABSOLUTE MAXIMUM RATINGS)
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	
4. ELECTRICAL SPECIFICATIONS	j
4.1 DESCRIPTION DISPLAY ELECTRONICS6	
4.2 BLOCK DIAGRAM6	
4.3 TYPICAL OPERATION CONDITIONS	
4.4 INTERFACE CONNECTIONS7	
4.5 POWER ON/OFF TIMING SEQUENCE10	
4.6 Data Input Format for TTL11	
4.7 Input Timing11	
4.8 DC Electrical Characteristics11	
4.9 AC Electrical Characteristics11	
5. OPTICAL CHARACTERISTICS	,
5.1 TEST CONDITIONS	
5.2 OPTICAL SPECIFICATIONS	
6. RELIABILITY TEST ITEM16	
7. PACKING	,
7.1 MODULE LABEL17	
7.2 PACKAGING METHOD17	
8. PRECAUTIONS	,
8.1 HANDLING PRECAUTIONS18	
8.2 STORAGE PRECAUTIONS	
8.3 OPERATION PRECAUTIONS18	
Appendix. OUTLINE DRAWING19	

Version 0.0

31 July 2018

2 / 25

 \oslash

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page	Description
V0	2018/07/31	All	Pre-Spec Ver.0.0 was first issued.

Version 0.0

31 July 2018

3 / 25

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

INNOLUX 群創光電 PRODUCT SPECIFICATION

1. GENERAL DESCRIPTION

1.1 OVERVIEW

JE070IA-18J is a 7" (7" diagonal) TFT Liquid Crystal Display FOG without LED Backlight unit and with 60 pins TTL interface. This FOG supports 800 x 480 WVGA mode.

1.2 GENERAL SPECIFICATIONS

Item	Specification		Unit	Note	
Screen Size	7" diagonal				
Driver Element	a-si TFT active matrix		-	-	
Pixel Number	800 x R.G.B. x 480		pixel	-	
Pixel Pitch	0.1905 (H) x 0.1905 (V)		mm	-	
Pixel Arrangement	RGB vertical stripe			-	
Display Colors	16,777,216 (8bit color depth)	16,777,216 (8bit color depth)			
Transmissive Mode	Normally black		-	-	
Surface Treatment	НС		-	-	
Transmittance	4.8		%	Тур.	
Power Consumption	615		mW	(1)	

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VDD = 3.3 V, f = 60

Hz, and Ta = $25 \pm 2 °C$, whereas white pattern is displayed.

2. MECHANICAL SPECIFICATIONS

	tem	Min.	Тур.	Max.	Unit	Note	
COO Obinaina	Horizontal (H)	159.9	160.2	160.5	mm		
FOG Shipping Size	Vertical (V)	101.4	101.7	102	mm	(1)	
5126	Thickness (T)	1.17	1.27	1.37	mm		
	Horizontal 154.5		154.8	155.1	mm	(1)	
CF Polarizer	Vertical	93.7	94	94.3	mm	(1)	
TFT Polarizer	Horizontal	159.3	159.6	159.9	mm	(1)	
IFI Polarizer	Vertical	97.24	97.54	97.84	mm	(1)	
Active Area	Horizontal		152.4		mm		
Active Area	Vertical		91.44		mm		
W	eight	42	44	46	g		

Note (1) Please refer to the attached drawings.

Version 0.0

31 July 2018

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	Unit	Note	
item	Symbol	Min.	Max.	Unit	NOLE
Power Voltage	V _{DD}	-0.5	5	V	(5)
Storage Temperature	T _{ST}	Ta=-40	Ta=90	°C	(1)(2)(3)(4)
Operating Ambient Temperature	T _{OP}	Ta=-30	Tp=85	°C	(1)(2)(3)(4)

Note (1) (a) 90 %RH Max. (Ta <= 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).

(c) No condensation.

Note (2) Ta = Ambient Temperature, Tp = Panel Surface Temperature.

Note (3) This rating applies to all parts of the module and should not be exceeded.

Note (4) If the product were used out of the operation and storage range, it will have quality issue

Note (5) The absolute maximum rating values of this product are not allowed to be exceeded at any times.

Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

Version 0.0

31 July 2018

4. ELECTRICAL SPECIFICATIONS

4.1 DESCRIPTION DISPLAY ELECTRONICS

The display module comes with an 8 bits TTL interface. The display's data and synchronization signals (DE, CLK,...), which generates all necessary control signals for the source driver and gate driver. Single VDD voltage inputs are required for display functional operation. Gamma setting adjustment is done by Innolux with default value. Please refer to the block diagram in section 4.2

4.2 BLOCK DIAGRAM

Version 0.0

31 July 2018

6 / 25

4.3 TYPICAL OPERATION CONDITIONS

Ta=25°℃

item	Symbol	Min.	Тур.	Max.	Unit.	Note.
Digital Supply Voltage	VDD	3.1	3.3	3.6	V	
Logic Input Voltage	VIH	0.7VDD	-	VDD	V	
	VIL	GND	-	0.3VDD	V	

4.4 INTERFACE CONNECTIONS

The Connector recommended model is IMSA-12001S-60Y903 manufactured by IRISO.

		С	onnector ty	pe:IMSA-12001S-	60Y903
PIN NO.	Symbol	I/Opin (I:input, O:output, P:power)	Typical voltage (Volt)		Function
1	GND	P	0.00 V	Power supply	GND
2	NC				Keep floating
3	VDD	Р	3.3 V	Power supply	External main and I/O power supply ; Power 3.3V
4	R0	I		TTL signal	Red Data (LSB)
5	R1	I		TTL signal	Red Data
6	R2	I		TTL signal	Red Data
7	R3	I		TTL signal	Red Data
8	R4	I		TTL signal	Red Data
9	R5	I		TTL signal	Red Data
10	R6	I		TTL signal	Red Data
11	R7			TTL signal	Red Data (MSB)
12	G0	1		TTL signal	Green Data (LSB)
13	G1			TTL signal	Green Data
14	G2	14		TTL signal	Green Data
15	G3	I		TTL signal	Green Data
16	G4	I		TTL signal	Green Data
17	G5	I		TTL signal	Green Data
18	G6	I		TTL signal	Green Data
19	G7	I		TTL signal	Green Data (MSB)
20	B0	I		TTL signal	Blue Data (LSB)
21	B1	I		TTL signal	Blue Data
22	B2	I		TTL signal	Blue Data
23	B3	I		TTL signal	Blue Data
24	B4	I		TTL signal	Blue Data
25	B5	I		TTL signal	Blue Data
26	B6	I		TTL signal	Blue Data
27	B7	I		TTL signal	Blue Data (MSB)
28	DCLK	I		TTL signal	Clock signal
Versio	on 0.0			31 July 201	8 7 / 25

 \oslash

PRODUCT SPECIFICATION

29	DE	I		TTL signal	Data Enable
30	VDD	Р	3.3 V	Power supply	External main and I/O power supply ; Power 3.3V
31	VDD	Р	3.3 V	Power supply	External main and I/O power supply ; Power 3.3V
32	NC				Keep floating
33	RESET	I	3.3V or 0V	Function	Global reset pin (Default high), active low.
34	STBYB	Ι	3.3V or 0V	Function	Standby mode setting pin (Default high), active low.
35	SHLR	Ι	3.3V or 0V	Function	Horizontal scan direction (Default high), Note (1)
36	VDD	Р	3.3 V	Power supply	External main and I/O power supply ; Power 3.3V
37	UPDN	I	3.3V or 0V	Function	Vertical scan direction (Default high), Note (1)
38	GND	Р	0.00 V	Power supply	GND
39	GND	Р	0.00 V	Power supply	GND
40	NC				Keep floating
41	NC				Keep floating
42	NC				Keep floating
43	NC				Keep floating
44	NC				Keep floating
45	NC				Keep floating
46	NC				Keep floating
47	NC				Keep floating
48	NC				Keep floating
49	VDD	Р	3.3 V	Power supply	External main and I/O power supply ; Power 3.3V
50	NC				Keep floating
51	GND	Р	0.00 V	Power supply	GND
52	GND	Р	0.00 V	Power supply	GND
53	GND	Р	0.00 V	Power supply	GND
54	VDD	Р	3.3 V	Power supply	External main and I/O power supply ; Power 3.3V
55	NC				Keep floating
56	NC				Keep floating
57	VDD	Р	3.3 V	Power supply	External main and I/O power supply ; Power 3.3V
58	NC				Keep floating
59	GND	Р	0.00 V	Power supply	GND
60	NC				Keep floating

Note (1)

SHLR	UPDN	Data shifting
VDD	VDD	Left→Right,UP→Down(default)
VDD	GND	Left→Right [,] Down→UP
GND	VDD	$Right{\rightarrow}Left\ ,\ UP{\rightarrow}Down$
GND	GND	Right→Left [,] Down→UP

Version 0.0

31 July 2018

8 / 25

Refer to the figure as below:

Version 0.0

31 July 2018

9 / 25

屏库:全球液晶屏交易中心

PRODUCT SPECIFICATION

4.5 POWER ON/OFF TIMING SEQUENCE

The recommended power on sequence should be: VDD \rightarrow RESET \rightarrow STBYB. To power off, reverse this sequence, or turn off all signals and power simultaneously. **Power on :**

Version 0.0

31 July 2018

10 / 25

4.6 Data Input Format for TTL

4.7 Input Timing

Only DE mode for 800x480

Parameter	Symbol	Min.	Тур.	Max.	Unit
CLK frequency	F _{CLK}	25.2	25.4	35.7	MHz
Horizontal display area	T _{HD}		800		CLK
HS period time	T _H	860	864	974	CLK
HS blanking	T _{HFP} + T _{HBP}	60	64	174	CLK
Vertical display area	T _{VD}	1.000	480		Н
VS period time	Tv	488	490	611	Н
VS blanking	T _{VBP} + T _{VFP}	8	10	131	Н

4.8 DC Electrical Characteristics

TTL Interface DC Characteristic :

(VDD= 3.0V to 3.6V, GND= 0V, Ta= +25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
High Level Input Voltage	VIH	0.7xVDD	÷	VDD	V	
Low Level Input Voltage	VIL	GND	2	0.3xVDD	V	
High Level Output Voltage	V _{OH}	VDD-0.4		VDD	V	VDD=3.3V @loh= 1mA
Low Level Output Voltage	VoL	GND	5	GND+0.4	V	VDD=3.3V @lol= -1mA
Pull-high/low Impedance	R _{PULL}	100	250	500	Kohm	VDD=3.3V, Ta =+25°C

4.9 AC Electrical Characteristics

Basic Input AC Characteristic :

(VDD= 3.0V to 3.6V, GND= 0V, Ta= +25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
VDD power source slew time	TPOR	-	-	20	ms	From 0V to 90% VDD
GRB active pulse width	T _{GRB}	1	51	178	ms	VDD = 3.3V
Power on reset voltage	VPOR	0	_	100	mV	

Version 0.0

31 July 2018

11 / 25

Power On Reset Chart

TTL-DE Interface AC Characteristic :

(VDD= 3.0V to 3.6V, GND= 0V, Ta= +25°C)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions
Clock Frequency	F _{CLK}	5		55	MHz	T _{CLK} = 1/F _{CLK}
CLK pulse width	T _{cw}	30% (*)	97728	70%	TCLK	(*) Over than 0.5/(FCLK)max.
Data setup time	T _{DSU}	6	(4)	()	ns	
Data hold time	T _{DHD}	6	9724	31-31	ns	
DE setup time	T _{ESU}	6	(-	ns	

Version 0.0

31 July 2018

12 / 25

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit		
Ambient Temperature	Та	25	°C		
Ambient Humidity	На	50	%RH		
Supply Voltage	VDDI		V		
Supply Voltage	VCI		V		
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"				
LED Light Bar Input Current	ΙL		mA		

The measurement methods of optical characteristics are shown in Section 5.2. The following items should

be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Iter	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Horizontal	x+		80	-	-		
	TIONZONIA	Х-	CR > 10	80	-	-	Deg.	(1), (4), (5)
Viewing Angle	Vertical	y+		80	-	-		
	Ventical	у-		80	-	-		
Transmittance		Т%		3.9	4.5	-	%	(4), (5)
Contrast Ratio		CR	20	800	1000	-	-	(2), (4), (5)
Response Time	•	$T_{R+}T_{F}$		-	25	35	ms	(3), (5)
	\\//b:te	Wx	θ _x =0°, θ _Y =0°	0.272	0.312	0.352	-	
	White	Wy		0.327	0.367	0.407		
	Dut	Rx	$\theta_{x} - \theta_{y} = 0$	0.621	0.661	0.701		
Color	Red	Ry		0.287	0.327	0.367	-	Panel
Coordinates		Gx		0.242	0.282	0.322	-	under
	Green	Gy		0.536	0.576	0.616		C light
	21	Bx		0.094	0.134	0.174		
	Blue	Ву		0.065	0.105	0.145		
NTS	SC				68	-	%	

INNOLUX 群創光電

PRODUCT SPECIFICATION

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F) :

Note (4) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Version 0.0	31 July 2018	14 / 25
The copy	right belongs to InnoLux. Any unauthorized use is prohibited.	

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com

INNOLUX

PRODUCT SPECIFICATION

Note (5) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

Version 0.0

31 July 2018

15 / 25

 $\langle P \rangle$

PRODUCT SPECIFICATION

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	Ta=90°C, 500 hours	
Low Temperature Storage Test	Ta=-40°C, 500 hours	
High Temperature Operation Test	Tp=85°C, 500 hours	Note 1
Low Temperature Operation Test	Ta=-30°C, 500 hours	Note 2 Note 3
High Temperature & High Humidity Operation Test	Ta=60°C, RH 90%, 500hours	Note 3
Thermal Shock	[(-40°C 30min)→(90°C 30min)]/cycle , 100cycles	

Note 1: Ta = Ambient Temperature, Tp = Panel Surface Temperature.

- Note 2: Criteria: Normal display image with no obvious non-uniformity and no line defect.
- Note 3: Evaluation should be tested after storage at room temperature for more than two hour
- Note 4: A certain level of Mura (non-uniformity) of dark / black image will happen several days after high temperature testing (H.T.T.). There is a slowly part recovery over a long time (several months). Such a long exposure time like in H.T.T. will normally not happen in a real application. Therefore the test H.T.T. was introduced to simulate cycles with normal conditions in-between but with the same total exposure time what show a significant reduced Mura.

The root cause is related to tension generated due to different amount of shrinking in the stack of layers in the polarizer sheet. The effect is more significant on larger displays like this size. An investigation into alternative polarizer material showed that there is no better alternative currently available.

Version 0.0

31 July 2018

- 7. PACKING
 - 7.1 MODULE LABEL (Unit:mm)

7.2 PACKAGING METHOD

Version	0.0
10101011	0.0

31 July 2018

17 / 25

INNOLUX 群創光電

PRODUCT SPECIFICATION

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMOS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the backlight unit.

Version 0.0

31 July 2018

18 / 25

Appendix. OUTLINE DRAWING

Version 0.0

31 July 2018

19 / 25

Version 0.0

31 July 2018

20 / 25

Notes:

-The dimensions without tolerance are +/-0.3mm. -Dimensions marked with " *+balloon " is significant dimension. Cpk>=1.33 , to be checked according " *+balloon " list : 1~3 -General dimensions numbered with " balloon " : 4-8 -Cannot guarantee for cosmetic defect outside of active area. -All otherdimensins are for reference.

Version 0.0

31 July 2018

21 / 25

Appendix II. SYSTEM COVER DESIGN GUIDANCE

Version 0.0

31 July 2018

22 / 25

	DI
	B : 2.0mm MIN B1 Protrusion
	BLU Label Protrusion B2
Definition	Gap between panel & protrusions is needed to prevent shock test failure. Because protrusions with small gap may hit panel during the test. Issue such as cell crack, abnormal display may occur.
4	Design gap C between touch panel & panel surface.
	LCD BLU Module rear bezel
Definition	BLU
Definition	BLU Module rear bezel Air gap design between touch panel & panel surface is needed to prevent pooling, newton ring or glass broken. Compression ration of double side tape may cause pooling issue or newton ring. This phenomenon is obvious during pooling inspection procedure.
	BLU Module rear bezel Air gap design between touch panel & panel surface is needed to prevent pooling, newton ring or glass broken. Compression ration of double side tape may cause pooling issue or newton ring. This phenomenon is obvious during pooling inspection procedure. To remain sufficient gap between touch panel and panel surface is recommended.
	BLU Module rear bezel Air gap design between touch panel & panel surface is needed to prevent pooling, newton ring or glass broken. Compression ration of double side tape may cause pooling issue or newton ring. This phenomenon is obvious during pooling inspection procedure. To remain sufficient gap between touch panel and panel surface is recommended. System rear-cover inner surface examination Image: transmission of the structure o

Version 0.0

31 July 2018

23 / 25

Version 0.0

31 July 2018

24 / 25

	Assembly Force System
	LCD Double tape Backlight System rear-cover
	Flat surface stage
Definition	To prevent panel crack during touch panel assembly process with double tape design, it is only allowed to give slight pressure with large contact area. This can help to distribute the stress and prevent stress concentration. We also suggest putting the system on a flat surface stage to prevent unequal stress distribution during the assembly.

Version 0.0

31 July 2018

25 / 25

The copyright belongs to InnoLux. Any unauthorized use is prohibited.

One step solution for LCD / PDP / OLED panel application: Datasheet, inventory and accessory! www.panelook.com