

Doc. Number:

Marie A. M. Control of the Control of Contro	INNOLUX	
--	---------	--

Tentative Specification
Preliminary Specification
Approval Specification

MODEL NO.: G156BGE SUFFIX: L01

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for yo signature and comments.	ur confirmation with your

Approved By	Checked By	Prepared By

Version 0.3 1 / 25 30 August 2013

CONTENTS

1.	GENERAL DESCRIPTION	4
	1.1 OVERVIEW	4
	1.2 GENERAL SPECIFICATIONS	4
2.	MECHANICAL SPECIFICATIONS	4
3.	ABSOLUTE MAXIMUM RATINGS	
	3.1 ABSOLUTE RATINGS OF ENVIRONMENT	
	3.2 ELECTRICAL ABSOLUTE RATINGS	5
	3.2.1 TFT LCD MODULE	5
	3.2.2 BACKLIGHT CONVERTER	
4.	ELECTRICAL SPECIFICATIONS	
	4.1 FUNCTION BLOCK DIAGRAM	
	4.2. INTERFACE CONNECTIONS	
	4.3 ELECTRICAL CHARACTERISTICS	
	4.3.1 LCD ELETRONICS SPECIFICATION	
	4.3.2 Vcc Power Dip Condition	
	4.3.3 BACKLIGHT UNIT	
	4.3.4 BACKLIGHT PIN ASSIGNMENT	
	4.4 LVDS INPUT SIGNAL SPECIFICATIONS	
	4.4.1 LVDS DATA MAPPING TABLE	
	4.4.2 COLOR DATA INPUT ASSIGNMENT	
	4.5 DISPLAY TIMING SPECIFICATIONS	
	4.6 POWER ON/OFF SEQUENCE	
5.	OPTICAL CHARACTERISTICS	
	5.1 TEST CONDITIONS	
	5.2 OPTICAL SPECIFICATIONS	
	RELIABILITY TEST ITEM	
	PACKING	
	MODULE LABEL	
9.	PRECAUTIONS	
	9.1 ASSEMBLY AND HANDLING PRECAUTIONS	
	9.2 STORAGE PRECAUTIONS	
	9.3 OPERATION PRECAUTIONS	
	9.4 SAFETY PRECAUTIONS	
	9.5 SAFETY STANDARDS	
	9.6 OTHER	.23

Version 0.3 30 August 2013 2 / 25 The

REVISION HISTORY

Version	Date	Page	Description
0.0	Jan.31, 2013	All	Spec Ver.0.0 was first issued.
0.1	Jun.28, 2013	16	Add Backlight pin assignment
0.2	Aus.28, 2013	25	Add mechanical drawing
		7	Modify Enable Voltage and Backlight Adjust
		12	Modify Enable Pin and Backlight Adjust
0.3	Aug.30, 2013	4	Add weight

Version 0.3 30 August 2013 3 / 25

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G156BGE-L01 is a 15.6" TFT Liquid Crystal Display module with WLED Backlight unit and 30 pins 1ch-LVDS interface. This module supports 1366 x 768 WXGA mode and can display up to 16.7M colors. The converter module for Backlight is built in.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	15.6" real diagonal		
Driver Element	a-si TFT active matrix	7-	-
Pixel Number	1366 x R.G.B. x 768	pixel	-
Pixel Pitch	0.252 (H) x 0.252 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	262K/16.7M	color	-
Transmissive Mode	Normally white	-	-
Surface Treatment	AG type, 3H hard coating,	-	-
Luminance, White	300	Cd/m2	
Color Gamut	65 % of NTSC(Typ.)	-	-
Power Consumption	(10.8W)		

2. MECHANICAL SPECIFICATIONS

It	em	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	363.3	363.8	364.3	mm	
Module Size	Vertical (V)	215.42	215.92	216.42	mm	
	Thickness (T)	(16.35)	(16.85)	(17.35)	mm	
Danal Assa	Horizontal	347.23	347.53	347.83	mm	
Bezel Area	Vertical	196.53	196.83	197.13	mm	
Active Area	Horizontal	-	344.232	-	mm	
Active Area	Vertical	-	193.536	-	mm	
Weight		-	(1250)		g	

Version 0.3 30 August 2013 4 / 25 The

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Va	lue	Unit	Note
item	Syllibol	Min.	Max.	Offic	Note
Storage Temperature	TST	-20	60	$^{\circ}\!\mathbb{C}$	(1)
Operating Ambient Temperature	TOP	0	(60)	$^{\circ}\!\mathbb{C}$	(1), (2)

Note (1)

- (a) 90 %RH Max. (Ta <= 40 $\,^\circ\mathrm{C}$).
- (c) No condensation.

Note (2) The temperature of panel surface should be 0 $\,^\circ\!\mathbb{C}\,$ min. and 60 $\,^\circ\!\mathbb{C}\,$ max.

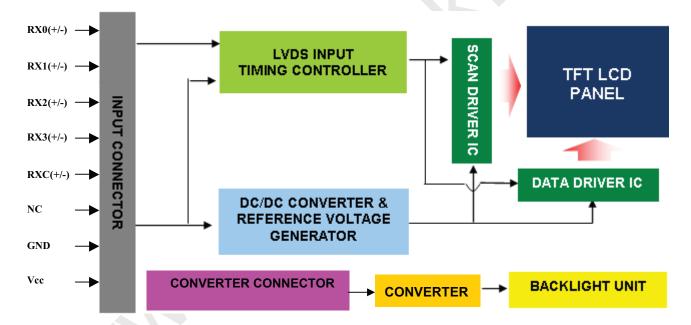
3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Val	lue	Unit	Note
1000		Min.	Max.	-	
Power Supply Voltage	vccs	-0.3	6.0	V	(1)
Logic Input Voltage	VIN	-0.3	6	V	(1)

Version 0.3 30 August 2013 5 / 25 The

3.2.2 BACKLIGHT CONVERTER


Item	Symbol	Value			Unit	Note	
item	Gyiribdi	Min. Typ Max.		Offic			
Converter Voltage	LED_V _{in}	0	12.0	18.0	V	(1), (2)	
Enable Voltage	LED_EN	0	3.3 / 5	7	V	Duty=100%	
Backlight Adjust	LED_PWM	0	3.3 / 5	7	V	(1), (2) Pulse Width≦10msec. and Duty≦10%	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for input pin of LED light bar at Ta=25±2 ℃ (Refer to 4.3.3 and 4.3.4 for further information).

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

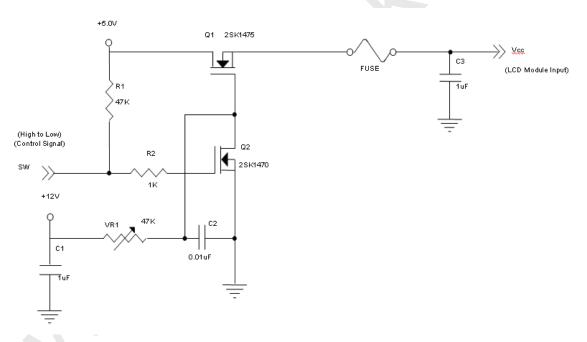
Pin	Name	Description
1	NC	Ground
2	NC	Not connection, this pin should be open.
3	NC	Not connection, this pin should be open.
4	GND	Ground
5	RX0-	Negative LVDS differential data input. Channel 0
6	RX0+	Positive LVDS differential data input. Channel 0
7	GND	Ground
8	RX1-	Negative LVDS differential data input. Channel 1
9	RX1+	Positive LVDS differential data input. Channel 1
10	GND	Ground
11	RX2-	Negative LVDS differential data input. Channel 2
12	RX2+	Positive LVDS differential data input. Channel 2
13	GND	Ground
14	RXCLK-	Negative LVDS differential clock input.
15	RXCLK+	Positive LVDS differential clock input.
16	GND	Ground
17	RX3-	Negative LVDS differential data input. Channel 3
18	RX3+	Positive LVDS differential data input. Channel 3
19	GND	Ground
20	NC	Not connection, this pin should be open.
21	NC	Not connection, this pin should be open.
22	AGMODE	AGMODE should be tied to ground or open.
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	Vcc	+5V power supply
27	Vcc	+5V power supply
28	Vcc	+5V power supply
29	Vcc	+5V power supply
30	Vcc	+5V power supply

Note (1) Connector Part No.:

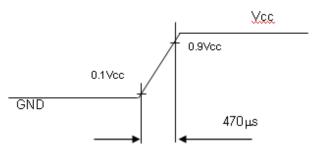
187114-30091, P2

Note (2) The first pixel is odd.

Note (3) Input signal of even and odd clock should be the same timing.


4.3 ELECTRICAL CHARACTERISTICS

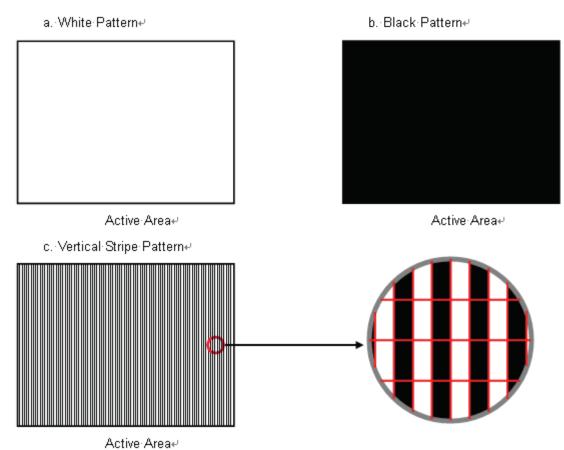
4.3.1 LCD ELETRONICS SPECIFICATION


Parame	Symbol		Value		Unit	Note		
Falaille	Parameter			Тур.	Max.	Offic	Note	
Power Supply	y Voltage	Vcc	(4.5)	(5)	(5.5)	V	-	
Ripple Vo	ltage	V_{RP}	-	-	(150)	mV	-	
Rush Cu	rrent	I _{RUSH}	-	-	(3)	Α	(2)	
	White		-	(0.32)	(0.37)	Α	(3)a	
Power Supply Current	Black		-	(0.46)	(0.54)	Α	(3)b	
	Vertical Stripe			(0.62)	(0.70)	Α	(3)c	
Power Cons	umption	PLCD	•	(2.05)	(2.52)	Watt	(4)	
LVDS differential	LVDS differential input voltage			-	(600)	mV		
LVDS common in	Vic	ı	TBD	-	V			
Logic High Inp	VIH	TBD		TBD	V			
Logic Low Inp	ut Voltage	VIL	0		(0.7)	V		

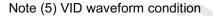
Note (1) The ambient temperature is Ta = 25 \pm 2 $^{\circ}$ C.

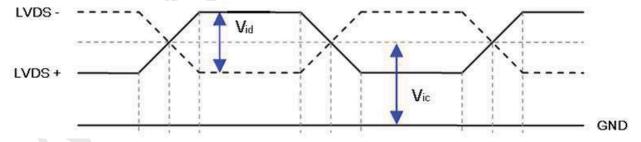
Note (2) Measurement Conditions:

Vcc rising time is 470µs



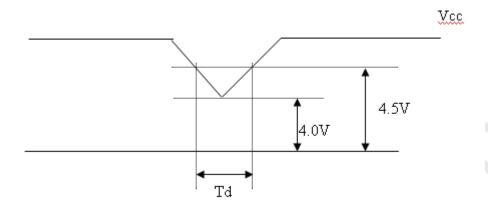
Version 0.3 30 August 2013 8 / 25 The





Note (3) The specified power supply current is under the conditions at Vcc = 5.0 V, Ta = 25 \pm 2 $^{\circ}$ C, Fr = 75Hz, whereas a power dissipation check pattern below is displayed.

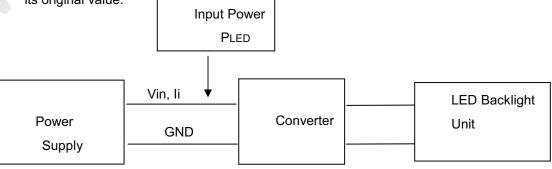
Note (4) The power consumption is specified at the pattern with the maximum current.



Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

4.3.2 Vcc Power Dip Condition



4.3.3 BACKLIGHT UNIT

T.O.O BACKLIOITI							
Param	atar	Symbol		Value		Unit	Note
i arani	ClGi	Gyillboi	Min.	Тур.	Max.	Offic	INOLE
Converter Power	Supply Voltage	LED_Vin	(10.8)	(12.0)	(13.2)	V	
Converter Power	Supply Current	li		(0.83)		Α	@LED_Vin= 12V Duty=100%
Converter Input	Rush Current	lirsh			(3)	Α	@LED_Vin rising = 1mS
Power Con:	P _{LED}		(9.96)		W	@ LED_Vin = 12V Duty=100%	
EN Control Level	Backlight on	LED EN	(2.0)	(5)	(5.5)	V	
EN CONTROL ECVE	Backlight off	LLD_LIV	(0)	(0)	(8.0)	•	
PWM Control Level	PWM High Level	LED PWM	(2.0)	(3.3)	(5.0)	V	
1 WW Control Level	PWM Low Level	LLD_I WW	(0)	(0)	(0.15)	•	
PWM Control	Duty Ratio		(10)		(100)	%	
PWM Control	f_{PWM}	(190)	(200)	(20k)	Hz		
LED Life	LL	(50,000)			Hrs	(2)	

Note (1) LED light bar input voltage and current are measured by utilizing a true RMS multimeter as shown below:

Note (2) The lifetime of LED is defined as the time when LED packages continue to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I= (60)mA (per chip) until the brightness becomes \leq 50% of its original value.

Version 0.3 10 / 25 30 August 2013

4.3.4 BACKLIGHT PIN ASSIGNMENT

Pin	Symbol	Description	Remark
1	V_{i}	Converter input voltage	12V
2	V_{GND}	Converter ground	Ground
3	EN	Enable pin	3.3 / 5 V
4	ADJ	Backlight Adjust	PWM Dimming (Hi: 3.3 / 5V _{DC} , Lo: 0V _{DC})
5	NC	Not Connect	

Note (1) Connector Part No.:

CI4205M2HRP-NH,CVILUX

4.4 LVDS INPUT SIGNAL SPECIFICATIONS

4.4.1 LVDS DATA MAPPING TABLE

LVDS Channel 0	LVDS output	D7	D6	D4	D3	D2	D1	D0
LVDO Onamici o	Data order	G0	R5	R4	R3	R2	R1	R0
LVDS Channel 1	LVDS output	D18	D15	D14	D13	D12	D9	D8
LVD3 Chamilei i	Data order	B1	B0	G5	G4	G3	G2	G1
LVDS Channel 2	LVDS output	D26	D25	D24	D22	D21	D20	D19
LVD3 Ghanner 2	Data order	DE	NA	NA	B5	B4	В3	B2
LVDS Channel 3	LVDS output	D23	D17	D16	D11	D10	D5	D27
LVD3 Chamiler 3	Data order	NA	B7	В6	G7	G6	R7	R6

Version 0.3 30 August 2013 11 / 25

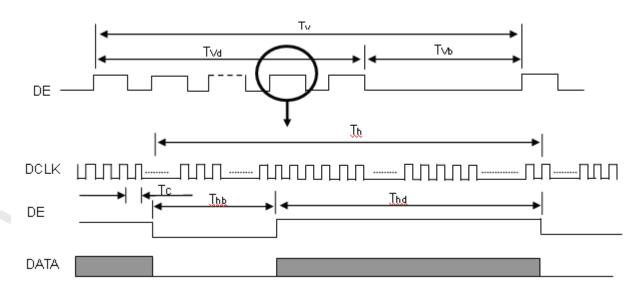
4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of color versus data input.

			Data Signal																						
	Color				Re	ed								reer	1			Blue							
		R7	R6	R5	R4	R3	R2	R1	R0	G 7	G 6	G 5	G 4	G3	G2	G1	G0	В 7	В6	В5	В4	ВЗ	В2	В 1	B 0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
 	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:				:	•	:	•		:		:			:	:	:	1:	:	:	:	:	:	:
Of	Red(253)	1	1	1	1	1	4	0	1	0	0		:0		: 0	0	^	_		_	0	: 0			٠.
Red	Red(253) Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0:
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0) / Dark		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	ő	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
_	Green(2)	0	0	0	0	0	0	Ö	Ö	0	Ö	0	0	0	0	1	0	0	0	0	0	ő	0	0	0
Gray	:	:	:	:	:					:	:	:	:	:	:	:				.	Ĭ	:	.		ĭ
Scale	:	l :	:	:	:				:	:	l :	:			:	:		:	:	:	:	:	:		
Of	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:			:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	1:		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
Diac	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Version 0.3 30 August 2013 12 / 25

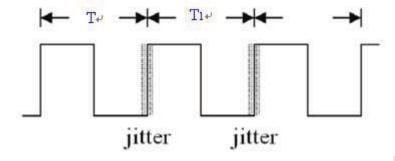

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

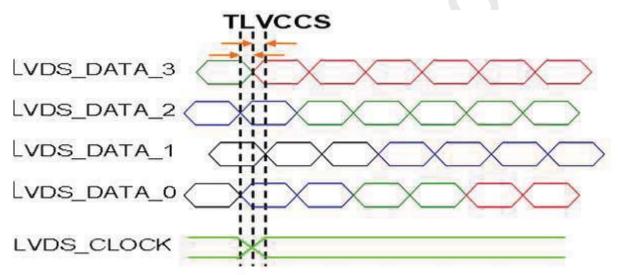
Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note	
	Frequency	Fc	(63)	(76)	(96)	MHz	-	
	Period	Tc		(13)		ns		
	Input cycle to cycle jitter	T_{rcl}	(TC -200)		(TC +200)	ns	(1)	
	Input Clock to data skew	TLVCCS			(400)	ps	(2)	
LVDS Clock	Spread spectrum modulation range	Fclkin_ mod	(FC*97%)		(FC*103%)	MHz	(2)	
	Spread spectrum modulation frequency	F_{SSM}			(200)	KHz	(3)	
	Frame Rate	Fr	(50)	(60)	(76)	Hz	Tv=Tvd+Tvb	
	Total	Tv	(800)	(806)	(815)	Th	-	
Vertical Display Term	Active Display	Tvd	(768)	(768)	(768)	Th	-	
	Blank	Tvb	(32)	(38)	(47)	Th	-	
	Total	Th	(1500)	(1560)	(1570)	Tc	Th=Thd+Thb	
Horizontal Display Term	Active Display	Thd	(1366)	(1366)	(1366)	Тс	-	
	Blank	Thb	(134)	(194)	(204)	Tc	-	

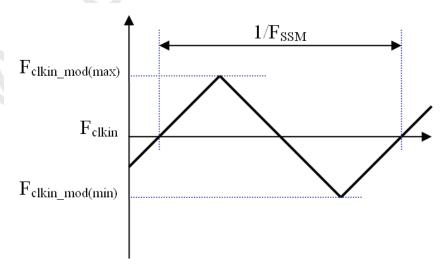
Note: Because this module is operated by DE only mode, Hsync and Vsync input signals are ignored.

INPUT SIGNAL TIMING DIAGRAM



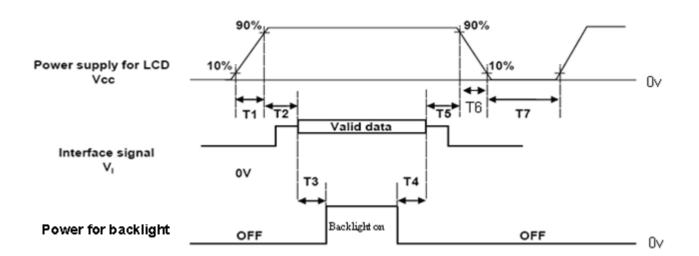
Version 0.3 30 August 2013 13 / 25




Note (1) The input clock cycle-to-cycle jitter is defined as below figures. Trcl = I $T_1 - TI$

Note (2) Input Clock to data skew is defined as below figures.

Note (3) The SSCG (Spread spectrum clock generator) is defined as below figures.


Version 0.3 30 August 2013 14 / 25

4.6 POWER ON/OFF SEQUENCE

The power sequence specifications are shown as the following table and diagram.

Timing Specifications:

Parameters		Units		
1 arameters	Min	Тур.	Max	Offics
T1	(0.5)		(10)	ms
T2	(0)	(30)	(50)	ms
T3	(500)		(800)	ms
T4	(200)			ms
T5	(0)	(20)	(50)	ms
T6	(5)		(1000)	ms
T7	(1000)			ms

- Note (1) The supply voltage of the external system for the module input should be the same as the definition of Vcc.
- Note (2) When the backlight turns on before the LCD operation of the LCD turns off, the display may momentarily become abnormal screen.
- Note (3) In case of VCC = off level, please keep the level of input signals on the low or keep a high impedance.
- Note (4) T4 should be measured after the module has been fully discharged between power off and on period.
- Note (5) Interface signal shall not be kept at high impedance when the power is on.
- Note (6) CMI won't take any responsibility for the products which are damaged by the customers not following the Power Sequence.
- Note (7) There might be slight electronic noise when LCD is turned off (even backlight unit is also off). To avoid this symptom, we suggest "Vcc falling timing" to follow "t6 spec".

Version 0.3

30 August 2013

15 / 25

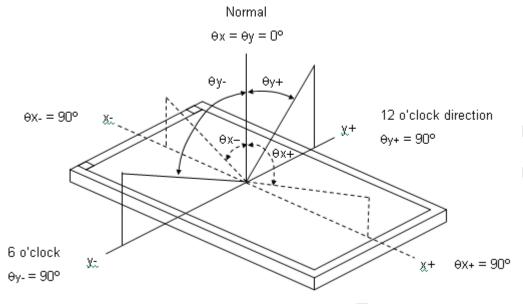
5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit			
Ambient Temperature	Ta	25±2	$^{\circ}\!\mathbb{C}$			
Ambient Humidity	На	50±10	%RH			
Supply Voltage	VCC	(3.3)	V			
Input Signal	According to typical value in "3. ELECTRICAL CHARACTERISTICS"					
LED Light Bar Input Current Per Input Pin	IPIN	(60 ±1.95)	mADC			
PWM Duty Ratio	D	100	%			
LED Light Bar Test Converter	CMI 35-D065452					

5.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 5.2. The following items should be measured under the test conditions described in 5.1 and stable environment shown in Note (5).


Iter	n	Symbol	Condition	Min.	Тур.	Max.	Unit	Note	
	Red	Rx			(0.633)				
	Red	Ry			(0.346)				
	Green	Gx			(0.331)				
Color Chromaticity	Oreen	Gy		Тур –	(0.605)	Typ +	_	(1) (5)	
(CIE 1931)	Blue	Вх	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	0.05	(0.148)	0.05	_	(1), (5)	
(3.2.333)	Blue	Ву	CS-2000 R=G=B=255		(0.066)				
	\\/hito	Wx	Gray scale		(0.313)				
	White	Wy			(0.329)				
Center Lumina (Center of		Lc		240	300	-	cd/m ²	(4), (5)	
Contras	t Ratio	CR		400	500	-	-	(2), (5)	
Resnons	e Time	T _R	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	(2)	(4)	ms	(3)	
ТСЭРОПЭ	Response Time		ο _χ -ο , ογ -ο	-	(6)	(12)	1113	(3)	
White Variation		W	θ_x =0°, θ_Y =0°	(70)	-	-	%	(5), (6)	
Viewing Angle	Horizontal	$\theta x - + \theta x +$	CR ≧ 10	(70)	(80)		Deg.	(1) (5)	
Viewing Angle –	Vertical	$\theta v - + \theta v +$	OIX = 10	(70)	(80)		Deg.	(1), (5)	

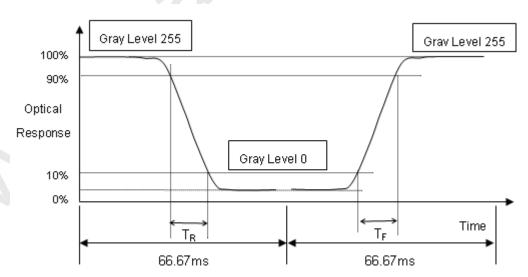
Version 0.3 30 August 2013 16 / 25

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0


L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

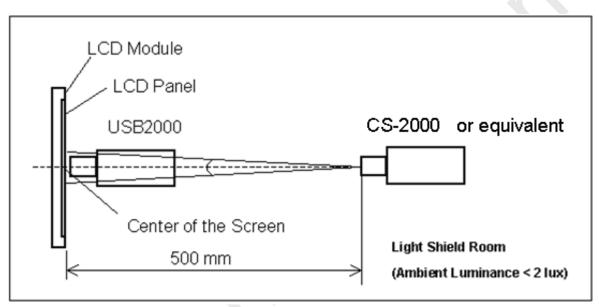
Note (3) Definition of Response Time (T_R, T_F) :

Version 0.3 30 August 2013 17 / 25

Global LCD Panel Exchange Center

PRODUCT SPECIFICATION

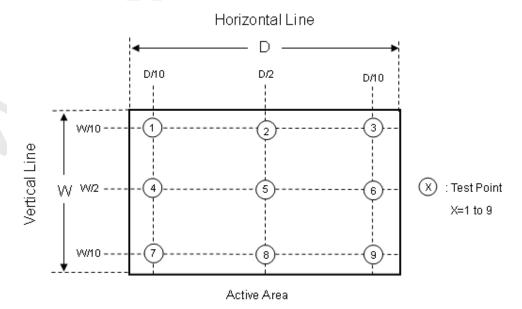
Note (4) Definition of Luminance of White (L_C):


Measure the luminance of gray level 255 at center point

$$L_C = L(5)$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6).

Note (5) Measurement Setup:


The LCD module should be stabilized at given temperature for 40 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room.

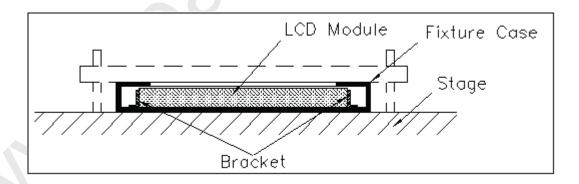
Note (6) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 9 points

 $\delta W = (Minimum [L (1) \sim L (9)] / Maximum [L (1) \sim L (9)]) *100%$

Version 0.3 30 August 2013 18 / 25

6. RELIABILITY TEST ITEM


Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50℃,80%RH, 240hours	
High Temperature Operation (HTO)	Ta= 60℃,50%RH,240hours	
Low Temperature Operation (LTO)	Ta= 0°C , 240hours	
High Temperature Storage (HTS)	Ta= 60℃,240hours	
Low Temperature Storage (LTS)	Ta= -20°C , 240hours	
	Acceleration: 1.5 Grms Wave: Half-sine	
Vibration Test	Frequency: 10 - 300 Hz	
(Non-operation)	Sweep: 30 Minutes each Axis (X, Y, Z)	
	Acceleration: 50 G	
	Wave: Half-sine	
	Active Time: 11 ms	
Shock Test	Direction : $\pm X$, $\pm Y$, $\pm Z$.(one time for each	
(Non-operation)	Axis)	
Thermal Shock Test (TST)	-20°C/30min , 60°C / 30min , 100 cycles	
	25°C ,On/10sec , Off /10sec , 30,000	
On/Off Test	cycles	
ESD (Electro Static Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω)	
	Air Discharge: ± 15KV, 150pF(330Ω)	
	Operation:10,000 ft / 24hours	
Altitude Test	Non-Operation:30 000 ft / 24hours	

Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

The fixing condition is shown as below:

7. PACKING TBD

Version 0.3 30 August 2013 **20 / 25**

8. MODULE LABEL

TBD

Version 0.3 30 August 2013 21 / 25

9. PRECAUTIONS

9.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) Do not apply rough force such as bending or twisting to the module during assembly.
- (2) To assemble or install module into user's system can be only in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- (3) It's not permitted to have pressure or impulse on the module because the LCD panel and Backlight will be damaged.
- (4) Always follow the correct power sequence when LCD module is connecting and operating. This can prevent damage to the CMOS LSI chips during latch-up.
- (5) Do not pull the I/F connector in or out while the module is operating.
- (6) Do not disassemble the module.
- (7) Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- (8) It is dangerous that moisture come into or contacted the LCD module, because moisture may damage LCD module when it is operating.
- (9) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (10)When ambient temperature is lower than 10℃ may reduce the display quality. For example, the response time will become slowly.

9.2 STORAGE PRECAUTIONS

- (1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0°C to 35°C and relative humidity of less than 70%
- (2) Do not store the TFT LCD module in direct sunlight
- (3) The module should be stored in dark place. It is prohibited to apply sunlight or fluorescent light in storing

9.3 OPERATION PRECAUTIONS

(1) The LCD product should be operated under normal condition.

Normal condition is defined as below:

Temperature : 20±15°C

Humidity: 65±20%

Display pattern: continually changing pattern(Not stationary)

(2) If the product will be used in extreme conditions such as high temperature, high humidity, high altitude , display pattern or operation time etc...It is strongly recommended to contact CMI for application engineering advice . Otherwise , Its reliability and function may not be guaranteed.

Version 0.3 30 August 2013 22 / 25

9.4 SAFETY PRECAUTIONS

- (1) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- (2) After the module's end of life, it is not harmful in case of normal operation and storage.

9.5 SAFETY STANDARDS

The LCD module should be certified with safety regulations as follows:

- (1) UL60950-1 or updated standard.
- (2) IEC60950-1 or updated standard.

9.6 OTHER

When fixed patterns are displayed for a long time, remnant image is likely to occur

Version 0.3 30 August 2013 23 / 25