

INNOLUX 群創光電

PRODUCT SPECIFICATION

	Ter	nta	tive	Specif	icatio	on
_	_			-		

Preliminary Specification

Approval Specification

MODEL NO.: G070ACE SUFFIX: LH2

Customer:

APPROVED BY

SIGNATURE

Name / Title Note

Please return 1 copy for your confirmation with your signature and comments.

Approved By	Checked By	Prepared By
		潘方傑

Version 0.0

CONTENTS

Version 0.0 13 August 202	1 2 / 40
11.3 OTHER PRECAUTIONS	
11.2 STORAGE PRECAUTIONS	
11.1 ASSEMBLY AND HANDLING PRECAUTIONS	
11. PRECAUTIONS	
10.1 INX MODULE LABEL	
10. DEFINITION OF LABELS	
9.3 UN-PACKING METHOD	
9.2 PACKING METHOD	
9.1 PACKING SPECIFICATIONS	
9. PACKAGING	
8. RELIABILITY TEST CRITERIA	
7.2 OPTICAL SPECIFICATIONS	
7.1 TEST CONDITIONS	
7. OPTICAL CHARACTERISTICS	
6.3 SCANNING DIRECTION	
6.2 POWER ON/OFF SEQUENCE	
6.1 INPUT SIGNAL TIMING SPECIFICATIONS	
6. INTERFACE TIMING	
5.1 TET LCD MODULE 5.2 COLOR DATA INPUT ASSIGNMENT	
5.1 TFT LCD MODULE	
4.1 TET LCD MODULE 5. INPUT TERMINAL PIN ASSIGNMENT	
4. BLOCK DIAGRAM	
3.2 BACKLIGHT UNIT 4. BLOCK DIAGRAM	
3.1 TET LCD MODULE 3.2 BACKLIGHT UNIT	
3. ELECTRICAL CHARACTERISTICS 3.1 TFT LCD MODULE	
2.2.1 TFT LCD MODULE 2.2.2 BACKLIGHT UNIT	
2.2 ELECTRICAL ABSOLUTE RATINGS	
2.1 ABSOLUTE RATINGS OF ENVIRONMENT	
2. ABSOLUTE MAXIMUM RATINGS	
1.5 MECHANICAL SPECIFICATIONS	
1.4 GENERAL SPECIFICATIONS	
1.2 FEATURE	
1.1 OVERVIEW	
1. GENERAL DESCRIPTION	-
A OFNERAL RECORDETION	-

One stop solution for LCD / OLED panel application: Datasheet, inventory and accessory!

PRODUCT SPECIFICATION

群創光電	
. MECHANICAL CHARACTERISTICS	31
Appendix . SYSTEM COVER DESIGN NOTICE	32

Version 0.0

13 August 2021

 \oslash

PRODUCT SPECIFICATION

REVISION HISTORY

Version	Date	Page	Description
Ver 0.0	13 Aug, 2021	All	Tentative Specification was first issued.

Version 0.0

1. GENERAL DESCRIPTION

1.1 OVERVIEW

G070ACE-LH2 is a 7" TFT Liquid Crystal Display module with WLED Backlight unit and 30 pins 1ch-LVDS interface. This module supports 800xRGBx480 AAS mode and can display 262k or 16.7M colors.

The PSWG is to establish a set of displays with standard mechanical dimensions and select electrical interface requirements for an industry standard 7" WVGA LCD panel and the LED driving device for Backlight is built in PCBA.

1.2 FEATURE

- WVGA (800 x 480 pixels) resolution
- DE (Data Enable) only mode
- LVDS Interface with 1pixel/clock
- PSWG (Panel Standardization Working Group)
- Wide operating temperature.

- RoHS compliance 1.3 APPLICATION

- -TFT LCD Monitor
- Factory Application
- Amusement

1.4 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Active Area	152.4 (H) x 91.44 (V) (7" diagonal)	mm	(1)
Driver Element	a-Si TFT active matrix	-	-
Pixel Number	800 x R.G.B. x 480	pixel	-
Pixel Pitch	0.1905 (H) x 0.1905 (V)	mm	-
Pixel Arrangement	RGB vertical Stripe	-	-
Display Colors	16.7M / 262K	color	-
Display Mode	Normally Black	-	-
Surface Treatment	Hard Coating (3H), Anti-Glare	-	-
Module Power Consumption	(Total 2.45 W @ cell 0.45 W, BL 2.0 W)	W	Тур.

Version 0.0

 \oslash

PRODUCT SPECIFICATION

1.5 MECHANICAL SPECIFICATIONS

Item		Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	169.5	170	170.5	mm	
Module Size	Vertical (V)	109.5	110	110.5	mm	(1)
	Thickness (T)	5.5	6	6.5	mm	
Densland	Horizontal	153.9	154.40	154.9	mm	
Bezel Area	Vertical	92.94	93.44	93.94	mm	
Active Area	Horizontal	-	152.4	-	mm	
	Vertical	-	91.44	-	mm	
Weight		173.66	(182.8)	191.94	g	

Note (1)Please refer to the attached drawings for more information of front and back outline dimensions.

Version 0.0

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Svmbol	Va	lue	Unit	Note
nem	Symbol	Min.	Max.	Unit	NOLE
Storage Temperature	Tst	-40	90	°C	(1)(2)
Operating Ambient Temperature	Тор	-30	85	°C	(1)(2)

Note (1)

(a) 90 %RH Max.

(b) Wet-bulb temperature should be 39 °C Max.

(c) No condensation.

Note (2) Panel surface temperature should be 0°C min. and 65°C max under Vcc=5.0V, fr =60Hz, typical LED string current, 25°C ambient temperature, and no humidity control. Any condition of ambient operating temperature ,the surface of active area should be keeping not higher than 65°C.

Relative Humidity (%RH)

INNOLUX 群創光電

2.2 ELECTRICAL ABSOLUTE RATINGS

2.2.1 TFT LCD MODULE

Item	Symbol	Val	ue	Unit	Note		
nem	Symbol	Min.	Max.	Onit	Note		
Power Supply Voltage	Vcc	-0.3	3.6	V	(1)		
Logic Input Voltage	V _{IN}	-0.3	3.6	V	(1)		

2.2.2 BACKLIGHT UNIT

Item	Symbol	Va	lue	Unit	Note	
item	Symbol	Min.	Max.	Unit	NOLE	
Converter Voltage	Vi	0	18.0	V	(1) , (2)	
Enable Voltage	EN		7	V		
Backlight Adjust	Dimming		7	V		

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation

should be restricted to the conditions described under Normal Operating Conditions.

Note (2) Specified values are for LED (Refer to 3.2 for further information).

Version 0.0

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

Paramotor	Parameter			Value		Unit	Note
Falancici		Symbol	Min.	Тур.	Max.	Unit	NOLE
Power Supply Vo	tage	Vcc	3.0	3.3	3.6	V	-
Ripple Voltage	e	V _{RP}	-	-	100	mVp-p	-
Rush Current	I _{RUSH}	-	-	2	А	(2)	
Power Supply Current	White	lcc	-	135	200	mA	(3)a
Power Supply Current	Black		-	85	135	mA	(3)b
LVDS differential inpu	t voltage	Vid	200	-	600	mV	
LVDS common input	voltage	Vic	1.0	1.2	1.4	V	
Differential Input Voltage for	"H" Level	V _{TH}	-	-	+100	mV	-
LVDS Receiver Threshold	"L" Level	V _{TL}	-100	-		mV	-
Logic Input Voltage	"H" Level	V _{IH}	2.6	-	Vcc	V	
	"L" Level	VIL	0	-	0.7	V	
Terminating Resi	R _T	-	100	-	Ohm	-	

Note (1)The module should be always operated within above ranges.

Note (2)Measurement Conditions:

Version 0.0

13 August 2021

Note (3) The specified power supply current is under the conditions at V_{CC} =3.3V, Ta = 25 ± 2 °C, DC Current and f_v = 60 Hz, whereas a power dissipation check pattern below is displayed.

a. White Pattern

Active Area

b. Black Pattern

Active Area

3.2 BACKLIGHT UNIT

Parame	oter	Symbol		Value		Unit	Note	
T didin			Min.	Тур.	Max.	Onit	Note	
Converter Power S	Supply Voltage	LED_Vin	10.8	12.0	13.2	V		
Converter Input F	Ripple Voltage	V _{iRP}	-		500	mV		
Converter Power S	Supply Current	li	0.1	0.17	0.2	А	@LED_Vin= 12V Duty=100%	
Converter Input I	Rush Current	lirsh		4.3		А	@LED_Vin rising = 1mS(Vi=12V)	
Input Power Co	onsumption	Pi	-	2.0	2.3	W	(1)	
EN Control Level	Backlight on	ENLED	2.0	3.3	5.0	V		
EN CONTOI LEVEI	Backlight off	(BLON)	0	-	0.15	V		
PWM Control Level	PWM High Level	Dimming	2.0		5.0	V		
PVVIVI CONITOL LEVEL	PWM Low Level	(E_PWM)	0		0.15	V		
PWN Noise	Range	VNoise	-	-	0.1	V		
PWM Control	Frequency	f _{PWM}	190	200	300	Hz	(3)	
PWM Dimming Control Duty Ratio			5	-	100	%	(3), @ 190Hz <f<sub>PWM<1kHz</f<sub>	
		-	20	-	100	%	(3), @ 1kHz≦f _{PWM} <20kHz	
LED Life	Time	L_{LED}	50,000		-	Hrs	(2)	

Version 0.0

群創光電

PRODUCT SPECIFICATION

Note (1)LED current is measured by utilizing a high frequency current meter as shown below:

- Note (2) The lifetime of LED is estimated data and defined as the time when it continues to operate under the conditions at Ta = 25 ± 2 °C and Duty 100% until the brightness becomes $\leq 50\%$ of its original value. Operating LED at high temperature condition will reduce life time and lead to color shift.
- Note (3) At 190 ~1kHz PWM control frequency, duty ratio range is restricted from 5% to 100%.

1k ~ 20kHz PWM control frequency, duty ratio range is restricted from 20% to 100%.

If PWM control frequency is applied in the range from 1kHz to 20kHZ, The "non-linear" phenomenon on the Backlight Unit may be found. So It's a **suggestion** that PWM control frequency should be **less than 1KHz**.

Version 0.0

4. BLOCK DIAGRAM

4.1 TFT LCD MODULE

Version 0.0

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD MODULE

Pin No.	Symbol	Function	Polarity	Note
1	12V	LED power		-
2	12V	LED power		-
3	12V	LED power		-
4	12V	LED power		-
5	ENLED	Enable pin		-
6	Dimming	Backlight Adjust		-
7	NC	No Conncetion (Reserve for INX test)		(4)
8	NC	No Conncetion (Reserve for INX test)		(4)
9	VCC	Power supply: +3.3V		-
10	VCC	Power supply: +3.3V		-
11	GND	Ground		-
12	GND	Ground		-
13	RX0-	Negative transmission data of pixel 0	Negative	-
14	RX0+	Positive transmission data of pixel 0	Positive	-
15	GND	Ground		-
16	RX1-	Negative transmission data of pixel 1	Negative	-
17	RX1+	Positive transmission data of pixel 1	Positive	-
18	GND	Ground		-
19	RX2-	Negative transmission data of pixel 2	Negative	-
20	RX2+	Positive transmission data of pixel 2	Positive	-
21	GND	Ground		-
22	RXCLK-	Negative of clock	Negative	-
23	RXCLK+	Positive of clock	Positive	-
24	GND	Ground		-
25	RX3-	Negative transmission data of pixel 3	Negative	-
26	RX3+	Positive transmission data of pixel 3	Positive	-
27	GND	Ground		
28	SEL6/8	LVDS 6/8 bit select function control, Low → 6 bit Input Mode High or NC → 8bit Input Mode		(3)
29	GND	Ground		-
30	GND	Ground		

Note (1) Connector Part No.: Starconn 093G30-B0001A-G4.or P-TWO 187114-30091

Note (2) User's connector Part No:

Mating Wire Cable Connector Part No. :FI-X30H (JAE) or FI-X30HL (JAE)

Note (3) "Low" stands for 0V. "High" stands for 3.3V

Note (4) Pin7, Pin8 input signals should be set to no connection or ground, this module

群創光電

PRODUCT SPECIFICATION

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	Sig	nal			-							
	Color				Re								Gre									ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	B3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	\sim	:	:	:	:	:	:	:	:	:	:	:
Of		:	:	:	:	;	:	:	:	:	:	:	:		:	:	:	:	:	:	:	-	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:				÷	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
I	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale		÷		:			:	:	:			•	-	-	:	:	:	:						:	-
Of	Blue(252)				:				0			:	•		:		: 0	1	: 1	-	1	1	1	:	1
Blue	Blue(253) Blue(254)	0	0 0	0 0	0	0 0	0 0	0 0	0	0 0	0	1	1	1	1	1	1	0 1	1						
	Blue(254) Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0 1
	Diue(200)	U	U	0	U	U	0	U	U	U	U	U	U	U	0	0	U	I	I	I	I	I	I	I	I

Note (1)0: Low Level Voltage, 1: High Level Voltage

Version 0.0

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
	Frequency	Fc	25.2	25.4	35.7	MHz	-
	Period	Тс		39.37		ns	
	Input cycle to cycle jitter	T _{rcl}	-0.02*Tc	-	0.02*Tc	ns	(a)
LVDS Clock	Input Clock to data skew	TLVCCS	-0.02*Tc	-	0.02*Tc	ps	(b)
	Spread spectrum modulation range	F _{clkin_mod}	-	-	1.02*F _c	MHz	
	Spread spectrum modulation frequency	F _{SSM}	23	-	93	KHz	(c)
	Frame Rate	Fr	-	60	-	Hz	-
Vertical Display	Total	Tv	488	490	611	Th	$Tv=T_{vd}+T_{vb}$
Term	Active Display	T_{vd}	480	480	480	T_{h}	-
	Blank	T _{vb}	8	10	131	T _h	-
	Total	T _h	860	864	974	T _c	$T_h = T_{hd} + T_{hb}$
Horizontal Display Term	Active Display	T _{hd}	800	800	800	T _c	-
IGIIII	Blank	T _{hb}	60	64	174	T _c	-

Note (1) Because this module is operated by DE only mode, Hsync and Vsync input signals should be set to low logic level or ground. Otherwise, this module would operate abnormally.

Note (2) The Tv(Tvd+Tvb) must be integer, otherwise, the module would operate abnormally.

INPUT SIGNAL TIMING DIAGRAM

Version 0.0

INNOLUX 群創光電

PRODUCT SPECIFICATION

TIMING DIAGRAM of LVDS

Note (a) The input clock cycle-to-cycle jitter is defined as below figures. T_{rcl} = I T1 – TI

Note (b) Input Clock to data skew is defined as below figures.

Version 0.0

13 August 2021

PRODUCT SPECIFICATION

群創光電 Note (c) The SSCG (Spread spectrum clock generator) is defined as below figures.

6.2 POWER ON/OFF SEQUENCE

To prevent a latch-up or DC operation of LCD assembly, the power on/off sequence should be as the diagram below.

Deremeter		Value					
Parameter	Min	Тур	Max	Min			
T1	0.5	-	10	ms			
T2	0	-	50	ms			
Т3	0	-	50	ms			
T4	500	-	-	ms			
T5	450	-	-	ms			
Τ6	200	-	-	ms			
T7	10	-	100	ms			

Version 0.0

13 August 2021

PRODUCT SPECIFICATION

群創					
	Т8	10	-	-	ms
	Т9	10	-	-	ms
	T10	20	-	50	ms

Note (1) Please avoid floating state of interface signal at invalid period.

Note (2) When the interface signal is invalid, be sure to pull down the power supply of LCD VCC to 0 V.

Note (3) The Backlight converter power must be turned on after the power supply for the logic and the interface signal is valid. The Backlight converter power must be turned off before the power supply for the logic and the interface signal is invalid.

Version 0.0

屏库:全球液晶屏交易中心

PRODUCT SPECIFICATION

6.3 SCANNING DIRECTION

The following figures show the image see from the front view. The arrow indicates the direction of scan.

Fig.1 Normal Scan

PCBA on the bottom side

Version 0.0

13 August 2021

 $\langle p \rangle$

PRODUCT SPECIFICATION

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	оС
Ambient Humidity	На	50±10	%RH
Supply Voltage	Accordin	ng to typical value and tole	erance in
Input Signal	"ELEO	CTRICAL CHARACTERIS	STICS"
PWM Duty Ratio	D	100	%

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown here and all items are measured at the center point of screen unless otherwise noted. The following items should be measured under the test conditions described above and stable conditions shown in Note (5).

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
	Red	Rx			(0.588)			
	Reu	Ry			(0.329)			
	Green	Gx			(0.336)			
Color	Green	Gy		Тур –	(0.602)	Тур –		(1), (5)
Chromaticity	Blue	Bx	θ X=0° , θ Y =0°	0.05	(0.150)	0.05	-	(1), (3)
	Blue	Ву	Grayscale Maximum		(0.054)			
	White	Wx			(0.313)			
	VVIIILE	Wy			(0.329)			
Center Lumina	Center Luminance of White			400	500		cd/m ²	(4), (5)
Contrast	Ratio	CR		600	800			(2), (5)
Respons	o Timo	TR	θX=0°, θY =0°	-	13	-	ms	(3)
Кезронз	e fille	TF	$\theta = 0$, $\theta = 0$	-	12	-	1115	(3)
White Va	riation	δW	θ X=0° , θ Y =0 °	70	-	-	%	(5), (6)
	Horizontal	θX+		80	89	-		
Viewing Angle	Honzontal	θΧ-	CR≧10	80	89	-	Deg.	(1) (5)
	Vertical	θ Y +		80	89	-	Dey.	(1), (5)
	ventical	θΥ-		80	89	-		

Definition :

Grayscale Maximum : Grayscale 255 (10 bits: grayscale 1023 ; 8 bits : grayscale 255 ; 6 bits: grayscale 63) White : Luminance of Grayscale Maximum (All R,G,B)

Black : Luminance of grayscale 0 (All R,G,B)

Version 0.0

PRODUCT SPECIFICATION

群創光電 Note (1)Definition of Viewing Angle (θx, θy):

Note (2)Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression at center point.

Contrast Ratio (CR) = White / Black

Note (3)Definition of Response Time (T_R , T_F):

Version 0.0

13 August 2021

Note (4) Definition of Luminance of White (L_C):

Measure the luminance of White at center point.

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 40 minutes in a windless room. The measurement placement of module should be in accordance with module drawing.

Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points.

Luminance of White : L(X), where X is from 1 to 5.

 $\delta W = \frac{\text{Minimum [L(1) to L(5)]}}{\text{Maximum [L(1) to L(5)]}} \times 100\%$

Version 0.0

13 August 2021

Active Area

Version 0.0

13 August 2021

 $\langle p \rangle$

PRODUCT SPECIFICATION

8. RELIABILITY TEST CRITERIA

Test Item	Test Condition	Note
High Temperature Storage Test	90°C, 240 hours	
Low Temperature Storage Test	-40°C, 240 hours	
Thermal Shock Storage Test	-30°C, 0.5hour ←→80°C, 0.5hour; 1hour/cycle,100cycles	(1),(2)
High Temperature Operation Test	85°C, 240 hours	(4),(5)
Low Temperature Operation Test	-30°C , 240 hours	
High Temperature & High Humidity Operation Test	60℃, RH 90%, 240 hours	
Shock (Non-Operating)	50G, 11ms, half sine wave, 1 time for \pm X, \pm Y, \pm Z	(2), (3)
Vibration (Non-Operating)	1.5G, 10 ~ 300 Hz, 10min/cycle, 3 cycles each X, Y, Z	

Note (1)There should be no condensation on the surface of panel during test ,

Note (2) Temperature of panel display surface area should be 85°C Max.

- Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.
- Note (4) In the standard conditions, there is no function failure issue occurred. All the cosmetic specification is judged before reliability test.
- Note (5) Before cosmetic and function test, the product must have enough recovery time, at least 24 hours at room temperature.

Version 0.0

9. PACKAGING

9.1 PACKING SPECIFICATIONS

- (1) 38 pcs LCD modules / 1 Box
- (2) Box dimensions: 445 (L) X 370 (W) X 275 (H) mm
- (3) Weight: approximately 8.3Kg (38modules per box)

9.2 PACKING METHOD

LCD Module

Figure. 9-1 Packing method

Version 0.0

13 August 2021

- Air Transportation
- Sea & Land Transportation (for Normal)
- Sea & Land Transportation (for HQ)

Figure. 9-2 Packing method

Version 0.0

群創光電

PRODUCT SPECIFICATION

9.3 UN-PACKING METHOD

Figure. 9-3 UN-Packing method

Version 0.0

13 August 2021

10. DEFINITION OF LABELS

10.1 INX MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

Note (1) Safety Compliance(UL logo) will open after C1 version.

Serial INX Internal Use Year, Month, Date INX Internal Use Revision INX Internal Use

Serial ID includes the information as below:

(a)Model Name: G070ACE-LH2

(a) Manufactured Date: Year: 1~9, for 2021~2029

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1^{st} to 31^{st} , exclude I , O and U

- (b) Revision Code: cover all the change
- (c) Serial No.: Manufacturing sequence of product

Version 0.0

13 August 2021

PRODUCT SPECIFICATION

群創光電 11. PRECAUTIONS

11.1 ASSEMBLY AND HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the lamp wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

11.2 STORAGE PRECAUTIONS

(1)When storing for a long time, the following precautions are necessary.

- (a) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 30°C at humidity 50+-10%RH.
- (b) The polarizer surface should not come in contact with any other object.
- (c) It is recommended that they be stored in the container in which they were shipped.
- (d) Storage condition is guaranteed under packing conditions.
- (e)The phase transition of Liquid Crystal in the condition of the low or high storage temperature will be recovered when the LCD module returns to the normal condition
- (2) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (3)It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (4)It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of lamp will be higher than the room temperature.

Version 0.0

13 August 2021

NNOLUX 群創光電 11.3 OTHER PRECAUTIONS

- (1) Normal operating condition
 - (a) Display pattern: dynamic pattern (Real display)
 - (Note) Long-term static display can cause image sticking.
- (2) Operating usages to protect against image sticking due to long-term static display
 - (a) Suitable operating time: under 16 hours a day.
 - (b) Static information display recommended to use with moving image.
 - (c)Cycling display between 5 minutes' information(static) display and 10 seconds' moving image.
- (3) Abnormal condition just means conditions except normal condition.

Version 0.0

13 August 2021

群創光電

. MECHANICAL CHARACTERISTICS

Version 0.0

13 August 2021

 \oslash

PRODUCT SPECIFICATION

Appendix . SYSTEM COVER DESIGN NOTICE

Version 0.0

 \oslash

PRODUCT SPECIFICATION

Version 0.0

3	System inner surface examination
	Module PCBA • The hatch area
	Module
	Burr Burr PCBA Chassis Step
	System cover inner surface
Definition	 a. The hatch area on Module PCBA should keep at least 1mm gap(X,Y,Z direction) to any structure with system cover inner surface. b. Burr, Step, PCB protrusion may cause stress concentration. White spot may occur during reliability test.

Version 0.0

13 August 2021

 \Diamond

PRODUCT SPECIFICATION

Version 0.0

13 August 2021

 \oslash

PRODUCT SPECIFICATION

Version 0.0

7 Design gap A between panel & any components on system rear-cover Max. Thickness System front-cover Module Component, System rear-cover Foreign objects, inner surface Wire, cable or Extrusion on system cover inner surface System cover including front cover and rear cover may deform during reliability test. Permanent deformation of system front cover and rear cover after reliability test should not interfere with panel. Because it may cause issue such as pooling, abnormal display, white spot and also cell creak. Definition Note: If the interference cannot be avoided, please feel free to contract INX FAE Engineer for collaboration design. We can help to verify and pass risk assessment for

Version 0.0

1	0
-	-

Design distance between TP AA to LCD AA

Version 0.0

13 August 2021

11	Use OCR Lamination
----	--------------------

Version 0.0

13 August 2021

Version 0.0