4

CUSTOMER APPROVAL SHEET

Company Name		
MODEL	C090EAN04.1	Y
CUSTOMER	Title :	
APPROVED	Name :	

- APPROVAL FOR SPECIFICATIONS ONLY (Spec. Ver. 0.0)
- APPROVAL FOR SPECIFICATIONS AND ES SAMPLE (Spec. Ver. 0.0)
- APPROVAL FOR SPECIFICATIONS AND CS SAMPLE (Spec. Ver. 0.0)
- CUSTOMER REMARK :

1 Li-Hsin Rd. 2. Science-Based Industrial Park Hsinchu 300, Taiwan, R.O.C. Tel: +886-3-500-8800 Fax: +886-3-577-2730

www.panelook.com

AUO-General

Doc. Version	1
Total Page	24
Date	2018/11/7

Product Specification 9.0" COLOR TFT-LCD MODULE

Model Number: C090EAN04.1

Part Number: 97.09C13.120

< < >Preliminary Specification

< >Final Specification

Note: The content of this specification is subject to change.

© 2016 AU Optronics All Rights Reserved, Do Not Copy.

ALAUCE CONTRACTOR AND ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

 \oslash

Version	4
Page:	3/25

Version 4 Page: 4/25

Record of Revision

Version	Revise Date	Page	Content
1	2018/11/07	All	First draft.
			19
			~0
			0
			XO

corsh-

Version 4 Page: 5/25

Contents

<u>A.</u>	General Description	6
<u>B.</u>	Features	6
<u>C.</u>	Physical Specifications	7
	1. TFT LCD Panel	4
<u>D.</u>		
	1. TFT-LCD Module	8
<u>E.</u>		
	1. TFT LCD Panel Pin Assignment	
	2 Differential Input Data Format	11
	a. VESA format(DE Mode)	
<u>3.</u>	Input Timing Diagram	
	4. Absolute Maximum Ratings	13
	5. DC Electrical Characteristics	
	a. Power Specification	
	a. Signal DC Electrical Characteristics	
<u>b.</u>	Backlight Driving Conditions (Note 1)	
	6. AC Electrical Characteristics	
<u>a.</u>	Input AC characteristics	
<u>b.</u>	Differential signal AC characteristics	
	8. Power on/off sequence	17
<u>a.</u>	Power on sequence:	
b.	Power Off sequence:	
<u>c.</u>	VDD off to on timing	
E.	Optical specifications (Note 1, 2)	
_		
<u>G.</u>		
<u>H</u>	Quality Spec	23
<u>I.</u>	Packing and Marking	
	1. Packing Form	
	2. Module/Panel Label Information	25
	3. Carton Label Information	25

Version 4 Page: 6/25

A. General Description

C090EAN04.1 is a a-Si type Thin Film Transistor Liquid crystal Display (TFT-LCD) with AHVA (Advanced Hyper-Viewing Angle) technology. This model is composed of a TFT-LCD, driver ICs, FPC (flexible printed circuit), and a backlight unit.

B. Features

- 9.0"-inch display
- 1280 x 720 RGB resolution in RGB stripe dot arrangement
- High brightness
- Interfaces: LVDS (8bit JEIDA, DE mode)
- AHVA wide view technology
- RoHS compliance

 $\langle P \rangle$

Version 4 Page: 7/25

C. Physical Specifications

1. TFT LCD Panel

NO.	Item	Unit	Specification	Remark
1	Display Resolution	dot	1280 (H)x 720(V) RGB	
2	Active Area	mm	198.72 (H) x 111.78 (V)	
3	Screen Size	inch	9.0(Diagonal)	
4	Dot Pitch	μm	51.75 (R.G.B) x 155.25 (V)	
5	Color Configuration	_	R. G. B. Stripe	\sim
6	Color Depth	_	16.7 M colors	
7	Overall Dimension	mm	212.2x127.9x7.6	w/o Boss
8	Weight	g	TBD+/- 10%	
9	Display Mode	_	Normally Black	
10	Surface Treatment	_	AG	

Note 1: Below figure shows dot stripe arrangement.

Note 2: Below figure shows dot stripe arrangement.

www.panelook.com

4

8/25

Version

Page:

AUO-General

D. Outline Dimension 1. TFT-LCD Module

(Drawing is temporary, Need further discussion with Tier1)

4

9/25

Version

Page:

AUO-General

E. Electrical Specifications 1. TFT LCD Panel Pin Assignment Recommended Connector:

Recommended Connector:								
No.	Pin Name	I/O	Description	Remarks				
1	GND	G	Ground.					
2	GND	G	Ground.					
3	PIND3	Ι	Positive LVDS differential input.					
4	NIND3	I	Negative LVDS differential input.					
5	GND	G	Ground.					
6	CLKP		Positive LVDS differential clock input.					
7	CLKN	I	Negative LVDS differential clock input.					
8	GND	G	Ground.					
9	PIND2	Ι	Positive LVDS differential input.					
10	NIND2	Ι	Negative LVDS differential input.					
11	GND	G	Ground.					
12	PIND1	-	Positive LVDS differential input.					
13	NIND1		Negative LVDS differential input.					
14	GND	G	Ground.					
15	PIND0	—	Positive LVDS differential input.					
16	NIND0	I	Negative LVDS differential input.					
17	GND	G	Ground.					
18	NC/CS		Dummy	NC,AUO test pin				
19	NC/SCL	*	Dummy	NC,AUO test pin				
20	NC/SDO		Dummy	NC,AUO test pin				
21	NC/SDI	5	Dummy	NC,AUO test pin				
22	GND	G	Ground.					
23	NC	7	Dummy					
24	VDD	PI	Digital power supply voltage.					
25	VDD	PI	Digital power supply voltage.					
26	VDD	PI	Digital power supply voltage.					
27	VDD	PI	Digital power supply voltage.					
28	NC/VPP		Dummy	NC,AUO test pin				
29	GND	G	Ground.					
30	GND	G	Ground.					
31	TH-		Thermistor-					
32	TH+		Thermistor+					
33	CATHODE1		Power Supply for LED circuit(CATHODE1)					
34	CATHODE2		Power Supply for LED circuit(CATHODE2)					
			NY PORTION OF THIS PAPER SHALL NOT BE REPRODUC					

Version 4

Page: 10/25

35	CATHODE3	Power Supply for LED circuit(CATHODE3)	
36	NC	Dummy	
37	NC	Dummy	
38	ANODE1	Power Supply for LED circuit(ATHODE1)	
39	ANODE2	Power Supply for LED circuit(ATHODE2)	
40	ANODE3	Power Supply for LED circuit(ATHODE3)	

I: Digital signal input, O: Digital signal output, G: GND, PI: Power input

4

11/25

Version

Page:

2. Differential Input Data Format a. JEIDA format(DE Mode)

Fig. 1. LVDS input data JEIDA format

Version 4 Page: 12/25

3. Input Timing Diagram

DE Mode

	Parameter	Symbol	Min.	Тур.	Max.	Unit.	Remark
CLK F	requency	F _{CLK}	66.03	71.15	80.08	MHz	
	Period	Τ _Η	1448	1540	1612	CLK	
HSYNC	Horizontal display area	T _{HD}		1280		CLK	
	Blanking	T_{HBP} + T_{HFP}	168	260	332	CLK	
	Period	Τ _V	760	770	828	HS	
VSYNC	Vertical display area	T _{VD}		720		HS	
	Blanking	T_{VBP} + T_{VFP}	40	50	108	HS	

4. Absolute Maximum Ratings

ltems	Symbol	Va	lues	Unit	Condition
items	Symbol	Min.	Max.	Unit	Condition
Power Voltage	VDD	-0.5	5	V	GND = 0V
Operation Temperature	Тора	-30	85	°C	Ambient
Storage Temperature	Tstg	-40	95	°C	Ambient

Note:Functional operation should be restricted under normal ambient temperature.

5. DC Electrical Characteristics

The following items are measured under stable condition and suggested application circuit. **a. Power Specification**

Parameter	Symbol	Min	Тур	Max	Unit	Notes
	VDD	3.0	3.3	3.6	V	
Power Supply	IVDD	-	128.3	312	mA	Note 3
	Inrush IVDD	-	-	451	mA	Note 4

Note 1: All conditions should be set typical value

Note 2: The panel can operate normally in the recommended operating condition.

Note 3: Test pattern is as the following picture.

Fig2. Max current situation: Vertical stripe pattern alternating 0 gray scale with 255 gray scale every dot

Note 4: Test condition is the VDD voltage range between 3.3V on the rising time 0.5ms, Please see below picture.

a. Signal DC Electrical Characteristics

4	Parameter	Symbol	Min	Тур	Мах	Uni t	Notes
	Input signal voltage	Vi	-0.3	-	VDD	V	Note1
	Input high level voltage	V _{IH}	0.7VDD	-	VDD	V	Note1
	Input low level voltage	V _{IL}	GND	-	0.3VDD	V	Note1
	Differential input high threshold	R _{XVTH}	0.2	-	-	V	Note 2

Version 4 Page: 14/25

Differential input low threshold	R _{XVTL}	-	-	-0.2	V	Note 2
Input voltage range (singled-end)	R _{XVIN}	0	-	(VDD-1.2)	v	Note 2
Input differential voltage	V _{ID}	0.15	-	0.6	V	Note 2
Differential Input Common Mode Voltage	R _{XVCM}	VID /2	-	(VDD-1.2 - VID /2)	v	Note 2

Note 1: TTL interface signal DC characteristics

Note 2: LVDS interface signal DC characteristic

Single-end Signal

Differential Signal

Fig. 3. LVDS DC characteristics diagram

b. Backlight Driving Conditions (Note 1)

V			· /			
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED Supply Current	Ι _L		80	85	mA	single serial (Note 3)
LED Supply Voltage	VL			27.2	V	single serial (Note 3)
LED Life Time	L	10,000			hr	Note 2

Note 1: light-bar has 24 pieces of LED (3 strings, 8 pieces for each string).

Note 2: LED life time defining the 50% decreasing of the original brightness is 10,000 hours under the 80 mA of LED current in 25 °C.

Note 3: The LED supply power is for 3 string of LED.

Note 4: The voltage capacity of LED driver IC must be over max. of LED Voltage.

Fig. 4. Light bar structure

	BACK LIGHT FPC PI	ΝA	SSIGMENT
PIN1	LED 1,4,7,10,13,16,19,22	+1	
PIN2	LED 2,5,8,11,14,17,20,23	+2	
PIN3	LED 3,6,9,12,15,18,21,24	+3	
PIN4	NA		
PIN5	САТНОДЕ	-1	
PIN6	CATHODE	-2	
PIN7	САТНОДЕ	-3	
PIN8	NA		
PIN9	NTC+	+	
PIN10	NTC-	_	

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.

 \oslash

6. AC Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark	
VDD power on slew time	T _{POR}	1	-	20	ms	From 0V to 90% VDD	

b. Differential signal AC characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
Clock frequency	R _{XFCLK}	66.03	71.15	80.08	MHz	
Input data skew margin	T _{RSKM}			400	ps	

Fig. 7 LVDS AC characteristics diagram

Version 4 Page: 17/25

8. Power on/off sequence

The LCD adopts high voltage driver IC, so it could be permanently damaged under a wrong power on/off sequence. The suggested LCD power sequence is below:

a. Power on sequence: $VDD \rightarrow LVDS \rightarrow BKLEN$

Power on timing:				
Doromotor		Units		
Parameter	Min.	Тур.	Max.	Units
Τ1	1		20	ms
T2	1		10	ms
Т3	300	350		ms

 $\langle p \rangle$

b. Power Off sequence: BKLEN \rightarrow LVDS \rightarrow VDD

Fig. 9. Power off sequence (GND=0V)

Power off timing:					
Baramatar		Units			
Parameter	Min.	Тур.	Max.	Units	
T1	90	100		ms	
T2	1		10	ms	
Т3	1		10	ms	
-				•	

c. VDD off to on timing

Parameter		Value	Unit	Remark		
Faranieter	Min.	Тур.	Max.	Onit	Remark	
T1	1			S	Note 1	

Note 1 : Before VDD turns ON, please make sure that AVDD; VGH; VGL; are all below intensity of 0.1V.

Version 4 Page: 19/25

F. Optical specifications (Note 1, 2)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
		θ=0° at 25℃(Ta)	-	30	40	ms	
Response time	Tr + Tf	θ=0° at 0℃(Ta)	-	65	95	ms	Note 3
(Rise + Fall)	11 + 11	θ=0° at -20℃(Ta)	-	150	200	ms	Note 3
		θ=0° at -30℃(Ta)	-	300	450	ms	
Viewing Angle Top Bottom Left Right	θ	$CR \ge 10$	70 70 70 70	80 80 80 80	-	deg.	Note 7, 8
Contrast ratio	CR1	θ=0°	700	1000			Note 4, 5, 6
Brightness	Y∟	θ=0°	(770)	(900)		cd/m ²	Note 1,2,9
White Chromaticity	x	$\theta = 0^{\circ}$	TBD 🔦	(0.296)	TBD		
white chromaticity	Y	$\theta = 0^{\circ}$	TBD	(0.313)	TBD		
Red Chromaticity	x	$\theta = 0^{\circ}$	TBD	(0.640)	TBD		
Red Chromaticity	Y	$\theta = 0^{\circ}$	TBD	(0.333)	TBD		Note 10
Green Chromaticity	x	$\theta = 0^{\circ}$	TBD	(0.298)	TBD		Note TO
Green Chromaticity	Y	$\theta = 0^{\circ}$	TBD	(0.602)	TBD		
Blue Chromaticity	x	$\theta = 0^{\circ}$	TBD	(0.148)	TBD		
	Y	θ=0°	TBD	(0.058)	TBD		
Uniformity	CAY	θ=0°	70			%	Note 11
NTSC				70		%	

Note 1: Measurement should be performed in the dark room, optical ambient temperature = 25 °C, and backlight current I_L = 80mA.

Note 2: To be measured in the center area of TFT-LCD with a field angle of 1° by Topcon luminance meter SR3, after 10 minutes operation and warm up 30 minutes.

Note 3: Definition of response time:

The output signals of photo detector are measured when the input signals are changed from "black state" to "white state" (falling time) and from "white state" to "black state" (rising time), respectively.

- Note 8: Viewing angles are measured at the center of the panel when all the input terminals of LCD oanel are electrically opened.
- Note 9: Brightness is measured at the center of the display.
- Note 10: The viewing angles are measured at the center area of the panel when all the input terminals of LCD panel are electrically opened.
- Note 11: Luminance Uniformity of these 9 points is defined as below: (1 : 4 : 4 : 1)

Version 4 Page: 21/25

Uniformity = $\frac{\text{minimum luminance in 9 points (1-9)}}{\text{maximum luminance in 9 points (1-9)}}$

Note 12.

Measured on the center area of the LCD active area . Measure equipment: SR3 or SR3A

 $\langle p \rangle$

Version 4 Page: 22/25

G. Reliability Test Items(Note 1~3)

No.	Test items	Conditions	Remark	
1	High temperature storage	Ta= 95 °C	500 Hrs	
2	Low temperature storage	Ta= -40 °C	500 Hrs	
3	High temperature operation	Ta= 85 °C	500 Hrs	
4	Low temperature operation	Ta= -30 °C	500 Hrs	
5	High temperature and high humidity	Ta= 60 ℃, 90 % RH	500 Hrs	Operation
6	Heat shock	-30 °C ~ 85 ℃ / 200 cycles	1 Hrs/cycle	Non-operation
7	Shock	100 G, 6 ms, ±X, ±Y, 3 times for each direc		
8	Electrostatic Discharge	Contact = ± 8 kV, clas Air = ± 15 kV, class	IEC61000-4-2	
9	Vibration	Stoke 2.9 G,	~ 33.3 Hz 1.3 mm 33.3 ~ 400Hz	JIS D1601,A10 Condition A
		Cycle15 min.2 hours for each direction of X, Z4 hours for Y direction		
10	Vibration (with carton)	Random vibration 0.015 G ² /Hz from 5 ~ 2 –6 dB/Octave from 200 ~	IEC 68-34	
11	Drop (with carton)	Height: 60 cm 1 corner, 3 edges, 6 su		

Note 1: Ta: Ambient temperature

In the standard condition, there is no display function NG issue occurred. All the cosmetic Note 2: specification is judged before the reliability stress. $I_{L} = 80 m A$

Note 3:

Version 4 Page: 23/25

H. Quality Spec

NO.	Inspection Item	Inspection Standards	
1	Black spots	$\begin{array}{l} \phi {\leq} 0.10 \\ 0.10 < \phi {\leq} 0.3 \\ 0.3 {<} \phi \end{array}$	
2	White spots	$\begin{array}{l} \phi {\leq} 0.10 \\ 0.10 < \phi {\leq} 0.3 \\ 0.3 {<} \phi \end{array}$	
3	Bright pixel dot	1 dot R&G&B&W by human eye	50
4	Dark pixel dot	1 dot by human eye	
5	Lines &Scratches	W≤0.03 and L≤1.0 0.03< W≤0.05 and L≤3.0 0.05< W or L>3.0 Visible by human eye	
6	Dent/Bubble	$\phi{\leq}0.10$ $0.10 < \phi \leq 0.3$ $0.30{<}\phi$ Visible by human eye	
7	Mura	Visible by human eye at full black/white pattern Visible by 5% ND filter	
$\langle \langle \langle \rangle \rangle$			-

www.panelook.com

I. Packing and Marking

Version 4 Page: 25/25

2. Module/Panel Label Information

The module/panel (collectively called as the "Product") will be attached with a label of Shipping Number which represents the identification of the Product at a specific location. Refer to the Product outline drawing for detailed location and size of the label. The label is composed of a 22-digit serial number with the following definition:

ABCDEFGHIJKLMNOPQRSTUV

For internal system usage and production serial numbers.

AUO Module or Panel factory code, represents the final production factory to complete the Product

Product version code, ranging from 0~9 or A~Z (for Version after 9)

└─Week Code, the production week when the product is finished at its production process

Example: 501M06ZL06123456781Z05: Product Manufacturing Week Code: WK50 Product Version: Version 1 Product Manufacturing Factory: M06

3. Carton Label Information

The packing carton will be attached with a carton label where packing Q'ty, AUO Model Name, AUO Part Number, Customer Part Number (Optional) and a series of Carton Number in 13 or 14 digits are printed. The Carton Number is appearing in the following format:

ABC-DEFG-HIJK-LMN

DEFG appear after first "-" represents the packing date of the carton

L L Date from 01 to 31

└ Month, ranging from 1~9, A~C. A for Oct, B for Nov and C for Dec.

A.D. year, ranging from 1~9 and 0. The single digit code reprents the last number of the year Refer to the drawing of packing format for the location and size of the carton label.

ALL RIGHTS STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSFORMED TO ANY OTHER FORMS WITHOUT PERMISSION FROM AU OPTRONICS CORP.